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FOREWORD 

 

The Self-Learning Material (SLM) is written with the aim of providing 

simple and organized study content to all the learners. The SLMs are 

prepared on the framework of being mutually cohesive, internally 

consistent and structured as per the university‘s syllabi. It is a humble 

attempt to give glimpses of the various approaches and dimensions to the 

topic of study and to kindle the learner‘s interest to the subject 

 

We have tried to put together information from various sources into this 

book that has been written in an engaging style with interesting and 

relevant examples. It introduces you to the insights of subject concepts 

and theories and presents them in a way that is easy to understand and 

comprehend.  

 

We always believe in continuous improvement and would periodically 

update the content in the very interest of the learners. It may be added 

that despite enormous efforts and coordination, there is every possibility 

for some omission or inadequacy in few areas or topics, which would 

definitely be rectified in future. 

 

We hope you enjoy learning from this book and the experience truly 

enrich your learning and help you to advance in your career and future 

endeavours. 
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UNIT 1 SYSTEMS OF LINEAR 

DIFFERENTIAL EQUATIONS 
 

STRUCTURE 

1.0 Objective  

1.1 Introduction 

1.2 Systems of Differential Equations  

   1.2.1 Systems of Linear Differential Equations 

   1.2.2 Unrestricted Growth 

   1.2.3 Logistic Growth 

   1.2.4 The Lotks-Volterra Equation 

   1.2.5 Partial Differential Equation 

   1.2.6 Stochastic Partial Differential Equation 

1.3 Solving Systems of Differential Equations 

1.4 Adams' Method 

1.5 Linear hyperbolic partial differential equation and system 

1.6 Summary 

1.7 Keyword 

1.8 Exercise 

1.9 Answer to Check in Progress 

1.10 Suggestion Reading and References 

 

1.0 OBJECTIVES 
 

This chapter will be devoted to explaining the main concepts of the 

systems of linear differential equations. Some theorems concerning the 

fundamental matrix of such systems will be proved. Relations between 

Wronskian and linear independence/dependence of solutions of such 

systems will be developed. 

 

1.1 INTRODUCTION 
 

We have already studied single differential equation of different types 

and obtained the existence and uniqueness of solution of initial value 
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problem of first order equations which are not necessarily linear. But in 

some practical situations we have to deal with more than one differential 

equation with many variables or depending upon a single variable. Such 

system of equations arise quite naturally in the analysis of certain 

physical situations. There is a very important class of differential 

equations known as linear differential equations, for which a general and 

elaborate theory is available. Apart from their theoretical importance, 

these equations are of great significance in physics and engineering in the 

problem of oscillation and electric circuits among others. This chapter 

extends the theory to a system of linear equations which give rise to the 

study of matrix differential equation, which will include both 

homogeneous and non-homogeneous type. 

 

1.2 SYSTEMS OF DIFFERENTIAL 

EQUATIONS 

In the introduction to this section we briefly discussed how a system of 

differential equations can arise from a population problem in which we 

keep track of the population of both the prey and the predator. It makes 

sense that the number of prey present will affect the number of the 

predator present. Likewise, the number of predator present will affect the 

number of prey present. Therefore the differential equation that governs 

the population of either the prey or the predator should in some way 

depend on the population of the other. This will lead to two differential 

equations that must be solved simultaneously in order to determine the 

population of the prey and the predator. 

The whole point of this is to notice that systems of differential equations 

can arise quite easily from naturally occurring situations. Developing an 

effective predator-prey system of differential equations is not the subject 

of this chapter. However, systems can arise from nthnth order linear 

differential equations as well. Before we get into this however, let‘s write 

down a system and get some terminology out of the way. 

We are going to be looking at first order, linear systems of differential 

equations. These terms mean the same thing that they have meant up to 
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this point. The largest derivative anywhere in the system will be a first 

derivative and all unknown functions and their derivatives will only 

occur to the first power and will not be multiplied by other unknown 

functions.  

We call this kind of system a coupled system since knowledge of x2 is 

required in order to find x1x1 and likewise knowledge of x1 is required 

to find x2. We will worry about how to go about solving these later. At 

this point we are only interested in becoming familiar with some of the 

basics of systems. 

Now, as mentioned earlier, we can write an nthnth order linear 

differential equation as a system. Let‘s see how that can be done. 

1.2.1 Systems of Linear Differential Equations 

A system of linear differential equations is a set of linear 

equations relating a group of functions to their derivatives. Because they 

involve functions and their derivatives, each of these linear equations is 

itself a differential equation. For example, f′(x)=f(x)+g(x) is a linear 

equation relating 'f′ to f and g, but f′=fg is not, because the fg term is not 

linear. These equations can be solved by writing them in matrix form, 

and then working with them almost as if they were standard differential 

equations. 

Systems of differential equations can be used to model a variety of 

physical systems, such as predator-prey interactions, but linear systems 

are the only systems that can be consistently solved explicitly. 

Differential equations are models of real systems that are believed to 

change their states continuously, or, to put it more precisely, at 

infinitesimally short intervals in time. Differential equations, or rather 

systems of differential equations, connect a change in the state of a 

system to its current state, or even the change in a change of the state of 

the same system, in a way that is comparable to the way difference 

equations allow the calculation of future states of a system from its 

current state. But unlike difference equations, the application of 
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differential equations supposes that the processes within the system 

modeled by these equations are continuous in time, whereas with 

difference equations, processes are discrete in time. 

For a number of real systems, the approach of differential equations 

seems appropriate, for instance in the case of the movement of an arrow 

through the air or of the local concentration of some pollutant in a lake. 

Here, one is only (or at least mainly) interested in the current value of 

some continuously measurable variable that is seen as varying 

continuously over time. More generally speaking, t is the parameter of a 

process {xt, tε T } where T is a continuous set with the same cardinality 

as that of the set of real numbers; the general form of a (first-order 

ordinary) difference equation is 

dx/dt =   = f (x ) 

Here, in a more symbolic way, dx is the change that occurs to the state 

variable x of the system in question during the infinitesimally short time 

interval dt at any time t. Differential equations of higher order are also 

possible; a second-order differential equation has the general form 

d
2
x/dt

2
 = x

∙∙
 = f (x ) 

and is often transformed into a system of differential equations 

  = x
∙∙
 = f (x ) = g (y ) 

y = x  = h (x ) 

Strictly speaking, in the realm of the social and economic sciences, 

applications of differential equations and systems of them are only 

approximations, because the state variables of social and economic 

systems cannot undergo continuous changes. In demography, for 

example, we can only talk about the birth and death of an integer number 

of people, and in economics we can only calculate with a fixed number 

of products sold to the customer (not even with the exception of fluid, 

gaseous goods, or energy, which can be physically split down to 

molecules and energy quanta). In social psychology, it is still an open 

question whether attitudes change continuously (they are usually 
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measured on four- or seven-point scales). And even if all these variables 

were continuous, the question remains whether these changes occur in a 

continuous manner: Children are born at a certain point in time, prices 

are paid at a certain point in time, and until the next payment arrives in 

one‘s bank account, the balance is constant. 

On the other hand, with a large number of demographic events or 

financial transactions, one could argue that a differential equation is a 

sufficiently good approximation that is, in most cases, more easily 

treatable than the discrete event formalization of the real process (this 

even applies when the alternative is a deterministic difference equation). 

Differential equations can also treat probabilistic problems (then we have 

stochastic differential equations) and can describe processes in time and 

space, for instance in diffusion processes where the distribution of local 

concentrations or frequencies changes over time. 

1.2.2 Unrestricted Growth 

Linear differential equations of the type x  = λx and systems of such 

equations can always be solved, that is, it is always possible to write 

down the time-dependent function that obeys the differential equation 

(which is the exponential function x (t ) = Ae λt, where A and λ are two 

constants that depend on the initial condition and the proportionality 

constant between x  and x, respectively). If the proportionality constant is 

positive, this results in an infinite growth, whereas with a negative 

proportionality (―the higher the value of x, the higher its decrease‖) the 

value of x approaches 0, though only in infinite time. This differential 

equation was first used in Thomas Malthus‘s (1766-1834) theories of 

demographic and economic growth. 

A system of linear differential equations has a vector-valued exponential 

function as its solution. One of the earlier applications of a very simple 

system of linear differential equations was Lewis Fry Richardson‘s 

(1960) model of an arms race between two powers. The idea behind this 

model is that each block increases the armament budget both 

proportional to the current armament expenses of the other block and the 
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budget available for other purposes. Thus, the change in the armament 

budget of block 1 is 

x  = m (x max – x ) + ay = g + mx + ay with g = mx max 

The same holds for the other block: 

  = bx + n (y max – y ) = h + bx + ny with h = ny max 

The analytical solution for this system of two linear differential equations 

has the general form 

q (t ) = θ 1q 1 exp (λ 1t ) θ2q2 exp (λ2t) + q3 

where q and q 
•
 are vectors with elements x and y and 

elements x 
•
 and y 

•
 respectively, while θ 1, θ 2, λ 1, λ 2, q 1, q 2 and q 3 are 

constants that depend on a, b, g, h, m, and n. In a way, only λ 1 and λ 2 are 

of special interest, because they are—as multipliers in the arguments to 

the exponential functions in the analytical solution—responsible for the 

overall behavior of the system. They can be shown to be the eigen-values 

of the matrix formed of – m, a, b, and – n, and these eigen-values can be 

complex, which means that besides stationary solutions, periodic 

solutions are also possible, at least in principle (although not in this case, 

where m, a, b, and n are all positive). If both λ 1 and λ 2 are 

negative, q (t ) approaches q 3 as times goes by; if at least one of them is 

positive, q (t ) grows beyond all limits (which of course is impossible in 

the real world). 

1.2.3 Logistic Growth 

One of the simplest cases of a differential equation in one variable—

which also displays some interesting behavior— is the so-called logistic 

or Verhulst equation, which in its time-continuous version has the form 

x  = rx (k – x ) 

One of the interpretations of this equation is that it describes a population 

in a habitat with carrying capacity K whose size changes continuously in 

such a way that the relative change (x 
•
/x ) is proportional both to the 
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current size x and to the difference between the current size and the 

carrying capacity (K – x, this difference is the proportion of the habitat 

that, in a way, is so far unused). 

The equation has two stationary solutions, namely, xst 0 = 0 and xst 1 = K. 

The former is unstable: Even from the tiniest initial state, the population 

will grow until the carrying capacity is exactly exhausted. The time-

dependent function x (t ), which obeys the differential equation, is a 

monotonically growing function whose graph is an S- shaped curve. This 

time-dependent function can be written as 

x (t ) = Kx (0) exp (rt )/{K – x (0) [1 – exp (rt )]} 

This differential equation is one of the simplest nonlinear ordinary 

differential equations. 

1.2.4 The Lotks-Volterra Equation 

Another well-known system of nonlinear differential equations is the so-

called Lotka-Volterra equation, which describes the interaction between 

predators and prey. It can also be applied to the interaction between a 

human population (predator) and its natural resources (prey). Here, the 

relative growth of the prey is a sum of a (positive) constant and a 

negative term that is proportional to the size of the predator population, 

whereas the relative growth of the predator population is a sum of a 

(negative) constant and a positive term that is proportional to the size of 

the prey population. In other words, in the absence of the predator 

population the prey would grow infinitely, whereas in the absence of the 

prey, the predator population would die out. 

x  = x (a – by ) 

  = y (–c + dx ) 

This system of differential equations does not have a closed solution, but 

it has a number of interesting features that show up no matter how 

detailed the model is for the interaction between predators and prey: The 

solution for this system of differential equations is a periodic function 
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with constant amplitude that depends on the initial condition. There is 

only one stationary state of the system, which is defined by y = ab (this 

leads to x• = 0) and x= c/d (this leads to y• = 0); thus if both hold, then 

no change will happen to the state of the system. Otherwise the 

populations increase and decrease periodically without ever dying out. 

1.2.5 Partial Differential Equations 

In most applications of differential equations and their systems, the 

parameter variable will be time, as in the examples above. But it is also 

possible to treat changes both in time and space with the help of a special 

type of differential equation, namely, partial differential equations. They 

define the change of the value of some attribute at some point in space 

and time—for instance, the expected change K of the continuously 

modeled and measured attitude X of a person that has the value x at 

time t, where this change will be different for different x and perhaps also 

for different t —in terms of this point in time and space. Thus, 

K (x, t ) = dx/dt = ∂V (x, t )/∂x 

For an application, see the next paragraph. Partial differential equations 

are seldom used in the social sciences because, typically, continuous 

properties of individual human beings—if they exist at all in the focus of 

interest of social scientists and economists—are difficult to measure, and 

even more difficult to measure within time intervals that are short 

enough to estimate any parameters of functions such as K and V in the 

above equation. 

1.2.6 Stochastic Differential Equations 

Stochastic influences can also be inserted into the formulation of 

differential equations. The simplest case is the so-called Langevin 

equation, which describes the motion of a system in its state space when 

there is both a potential whose gradient it follows and some stochastic 

influence that prevents the system from following the gradient of this 

potential in a precise manner. This type of description can, for instance, 

be used to describe the attitudes of voters during an election campaign. 
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Each voter‘s attitude can be defined (and measured) in a continuous 

attitude space. Their motions through this attitude space (say, from left to 

right; see, e.g., Downs 1957, p. 117) are determined by a ―potential‖ that 

is determined either by some parties that ―attract‖ voters toward their 

own positions in the same attitude space or by the ―political 

climate‖ defined by the frequency distribution over the attitude space. In 

the latter case, voters would give up their attitude if it is shared by only a 

few and change it into an attitude that is more frequent. Thus they follow 

a gradient toward more frequent attitudes; but while moving through the 

attitude space, they would also perform random changes in their 

attitudes, thus not obeying exactly the overall political climate. And by 

changing individual attitudes, the overall ―climate‖ or potential is 

changed. The movement could be described as follows: 

   (t ) = – γ∂V (q, t )/∂  + εt 

where 

V (q, t ) = –Inf (q, t ) 

and f (q, t ) is the frequency distributions of voters over the attitude space 

at time t (V would be a polynomial up to some even order in q). One 

would typically find voters more or less normally distributed at the 

beginning of an election campaign, but the process described here would 

explain why and how polarization—a bimodal or multimodal frequency 

distribution—could occur toward the election date (Troitzsch 1990). 

Check In Progress-I 

Q. 1 Define System of Differential Equation. 

Solution : . . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . .  . . . . . .  . . . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . 

. . . . . . . .  . . . . . .  . …………. . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . 

. .  . . . . . . . . . . . . . . . . . .  . . . . . .  . …………. . .  . .  . . . . .  . . . . . .  . . . . 

. . . . . . . . .  . . . . .  . . . . . . . . . . . . . . . . . .  . . . . . .  . . . . . . . . .. . .  . .  . . . . 

.  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . . . . .  . . . . . .  . .. . . . . 

. .  

Q. 2 Define Partial Differential Equation. 
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Solution : . . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . .  . . . . . .  . . . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . 

. . . . . . . .  . . . . . .  . …………. . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . 

. .  . . . . . . . . . . . . . . . . . .  . . . . . .  . …………. . .  . .  . . . . .  . . . . . .  . . . . 

. . . . . . . . .  . . . . .  . . . . . . . . . . . . . . . . . .  . . . . . .  . . . . . . . . .. . .  . .  . . . . 

.  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . . . . .  . . . . . .  . .. . . . . 

. .  

1.3 SOLVING SYSTEMS OF 

DIFFERENTIAL EQUATIONS 
 

Imagine a distant part of the country where the life form is a type of 

cattle we'll call the 'xnay beast' that eats a certain type of grass we'll call 

'ystrain grass'. The change in the xnay population depends on the ystrain 

as well as on the current size of the xnay population. The population of 

ystrain also depends on xnay and the current amount of ystrain. It's a 

fascinating mix! The more xnay, the more ystrain gets eaten which 

reduces the amount of ystrain which can reduce the amount of xnay. Less 

xnay and the ystrain can thrive. It can be very interesting! Especially for 

the xnay. 

Having a variable whose rate of change depends on the variable itself, 

leads to exponential solutions of the differential equation. When we have 

two or more variables that are also interdependent, we have a system of 

differential equations and the solution is a mix of exponentials. 

Population problems are often modeled with systems of differential 

equations. In this lesson, we will look at two solution methods. 

Describing the Equations 

There are usually more than two interrelated variables in a population 

study. Food resources, predators, climate conditions, … will all interact 

with population size and its rate of change. To keep things simple, we 

will look at two variables. This will be enough to show the basic ideas of 

how to solve these systems of equations. For example: 
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with x(0) = 2 and y(0) = 1. 

The little dot over the x and the y on the left-hand side, is the time 

derivative. The first equation says the time rate of change of x depends 

on both x and y. The same can be said for the time rate of change of y. It 

depends on both x and y. Solving these equations tells us 

how x and y evolve over time. The statement x(0) = 2 means at time t = 

0, the population of xnay was 2. The population of ystrain was 1 at 

time t = 0. 

We will use the eigenvalue and the Laplace transform methods to solve 

this system of equations. You are invited to check out other lessons on 

linear algebra and Laplace transforms for more details. 

Solving Using Eigenvalues 

We write the equations in matrix form: 

 

The matrix is called the 'A matrix'. In general, another term may be 

added to these equations. With no other term, the equations are 

called homogeneous equations. We will only look at the homogeneous 

case in this lesson. 

The next step is to obtain the characteristic equation by computing the 

determinant of A - λI = 0. The details: 
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This tells us λ is -3 and -2. These are the eigenvalues of our system. 

Sometimes the eigenvalues are repeated and sometimes they are complex 

conjugate eigenvalues. In our example, we have two distinct and real 

eigenvalues. We will not cover the other cases in this lesson. Each of 

these eigenvalues has an eigenvector. For λ = -3, the eigenvector is 

calculated: 

 

The equation relating a with b is 4a - 3b = 0. We choose a value for one 

of the letters. For example, letting b = 1 means a = ¾. The eigenvector 

v1 is 

 

For λ = -2, the eigenvector calculation is: 

 

The resulting equations are 3a - 3b = 0 and 4a - 4b = 0. These equations 

are true for a = b. Again, we choose a value. If a = 1, then b = 1. The 

eigenvector v2 is 

 

We now have a solution! In general, the solution is 
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where λ1 is -3 and λ2 is -2. 

Substituting our eigenvalues and eigenvectors: 

 

Linear Systems 

Linear systems are systems of equations in which the variables are never 

multiplied with each other but only with constants and then summed up. 

Linear systems are used to describe both static and dynamic relations 

between variables. 

In the case of the description of static relations, systems of linear 

algebraic equations describe invariants between variables such as: 

a11x + a12x1 = c1 

a21x + a22x 2 = c2 

Here, one would be interested in the values of x1 and x2 for which both 

equations hold. This system of equations can easily be written in matrix 

form: 

or, more concisely: 

Ax = c 

The solution can be written as x = A
-1

 c if the matrix A is invertible. 

Another frequent application of systems of linear algebraic equations is 

the following: 

yi = b0 + b1xi 1 + b2xi 2 + b3xi 3 + … + bmxi m + ei 

The above is a regression equation stating that for every object i, its 

attribute Y has a value that can be expressed as the weighted sum of its 
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attributes X1 through Xm, with a measurement error of E (whose variance 

should be a minimum in the classical regression analysis). The term 

linear is derived from the fact that the graphical representation of the 

above equation for m = 1 is a straight line (with intercept b0 and 

slope b 1). The above equation holds for all i, thus the system of 

equations: 

y 1 = b 0 + b 1x 11 + b 2x 12 + b 3x 13 + … + b m x 1m + e 1 

y 2 = b 0 + b 1x 21 + b 2x 22 + b 3x 23 + … + b m x 2m + e 2 

… 

y n = b 0 + b 1x n1 + b 2x n2 + b 3x n3 + … + b m x nm + e n 

for all n objects is often written in the abbreviated form, using matrices 

and vectors, 

y = Xb + e 

where y and e are column vectors containing all yi and ei, respectively 

(i = 1 … n ), b is a row vector containing all bj (j = 0 … m ), and X is 

a n × (m + 1) matrix (with n rows and m + 1 columns) containing xij in 

the cells in row i and column j (where xi 0 = 1 for all i ). Here one is 

interested in the values of the regression coefficients bj (j = 0 … m ) 

which minimize the variance of the regression residual E. This is solved 

by calculating e
T
 e which is the sum of the squares of the still 

unknown ei and calculating the derivatives of e
T
 e with respect to all 

(also unknown) bj. These derivatives will be 0 for e
T
 e = min, and the 

solution of this minimization problem is expressed as follows: 

Linear systems are also used to describe dynamic relationships between 

variables. An early standard example from political science is English 

physicist Lewis Fry Richardson‘s (1881-1953) model of arms races, 

which consists of the following simplifying hypotheses: 

 The higher the armament expenses of one military block, the faster the 

increase of the other block‘s armament expenses (as the latter wants to 

adapt to the threat as quickly as it can). 
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 The higher the armament expenses of a military block, the slower those 

expenses will increase (as it becomes more difficult to increase the 

proportion of military expenses with respect to the gross national 

product). 

Calling the armament expenses of the two blocks x1 and x2, respectively, 

and their increase rates x  1 and x  2, respectively, one can model the 

increase rates as proportional both to the military expenses of the other 

block and the nonmilitary expenses of the own block (the total max max 

expenses and being constant), with some proportionality constants a, b, 

m, and n : 

or, in shorter form: 

Such linear systems of differential equations usually have a closed 

solution, that is, there is a vector-valued function q (t ) that fulfills this 

vector-valued differential equation. Usually, the precise form of q (t ) is 

not very interesting, but generally speaking it has the form: 

q (t ) = θ 1 q 1 e 
λ1t 

+ θ 2 q 2 e 
λ2t 

+ qs 

where q 1, q 2 and qs are constant vectors and θ 1, θ 2 λ 1 and λ 2 are 

constant numbers of which mainly qs, λ1 and λ2 are of special 

interest. qs is the stationary state of the system of differential equations, 

that is, once the system has acquired this state, it will never leave that 

state, as the derivatives with respect to time vanish. λ 1 and λ 2 are the so-

called eigenvalues of the matrix A, which, as the exponents of the two 

exponential functions in the above equation, determine whether the 

function q (t ) will grow beyond all limits over time or whether the two 

first terms in the right-hand side of the above equation will vanish as 

time approaches infinity. For negative values of both λ 1 and λ 2 the latter 

will happen, and the overall function will approach its stationary state (in 

which case the stationary state is called stable or an attractor or sink ). If 

both eigenvalues are positive, then the function will grow beyond all 

limits (in which case the stationary state is called unstable or 

a repellor or source ). If one of the λ s is positive while the other is 

negative, the stationary is also unstable, but is called a saddle 
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point because the function will first approach the stationary state and 

then move away. There is a special case when λ 1 and λ 2 are pure 

imaginary numbers—which happens if 4ab < 0 and m = n = 0, as . In the 

arms race model this is not a reasonable assumption, as one block would 

increase its arms expenses faster, the smaller the arms expenses of the 

other block are (exactly one of a and b would be negative and the 

respective block would behave strangely, the other constant would be 

positive, so the other block would behave normally) and both would 

increase or decrease its arms expenses regardless of what their current 

values are (m = n = 0 means that there is no influence of the current 

value of arms expenses upon its change for both blocks). In this case 

both variables x 1 and x 2 oscillate around the stationary state. 

The example demonstrates that systems of linear differential equations 

always have a closed solution, which can be expressed in several 

different forms. There is always exactly one stationary state (except in 

the case that the matrix A is not invertible) that can either be a sink or a 

source or a saddle or a center. Nonlinear systems often have more than 

one stationary state, but their behavior can be analyzed in a similar way, 

taking into account that a linear approximation of a nonlinear system 

behaves approximately the same in a small neighborhood of each of its 

stationary states. 

1.4 ADAMS' METHOD 

Adams' method is a numerical method for solving linear first-order 

ordinary differential equations of the form 

 

(1) 

Let 

 

(2) 

be the step interval, and consider the Maclaurin series of  about , 
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(3) 

 

(4) 

Here, the derivatives of  are given by the backward differences 

  

 

(5) 

  

 

(6) 

 

 

 

(7) 

etc. Note that by (◇),  is just the value of . 

For first-order interpolation, the method proceeds by iterating the 

expression 

 

(8) 

where . The method can then be extended to arbitrary order 

using the finite difference integration formula from Beyer (1987) 

 

(9

) 

to obtain 

 

(10) 

Note that von Kármán and Biot (1940) confusingly use the symbol 

normally used for forward differences  to denote backward 

differences . 

Check In Progress-II 
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Q. 1 Define Linear Systems . 

Solution : . . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . .  . . . . . .  . . . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . 

. . . . . . . .  . . . . . .  . …………. . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . 

. .  . . . . . . . . . . . . . . . . . .  . . . . . .  . …………. . .  . .  . . . . .  . . . . . .  . . . . 

. . . . . . . . .  . . . . .  . . . . . . . . . . . . . . . . . .  . . . . . .  . . . . . . . . .. . .  . .  . . . . 

.  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . . . . .  . . . . . .  . .. . . . . 

. .  

Q. 2 State Adam‘s Method . 

Solution : . . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . .  . . . . . .  . . . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . 

. . . . . . . .  . . . . . .  . …………. . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . 

. .  . . . . . . . . . . . . . . . . . .  . . . . . .  . …………. . .  . .  . . . . .  . . . . . .  . . . . 

. . . . . . . . .  . . . . .  . . . . . . . . . . . . . . . . . .  . . . . . .  . . . . . . . . . 

1.5 LINEAR HYPERBOLIC PARTIAL 

DIFFERENTIAL EQUATION AND 

SYSTEM 

 

A partial differential equation (or system) of the form 

 

(1) 

for which at any point  of its domain of 

definition  one can distinguish among the real variables  (if 

necessary, after a suitable affine transformation of the independent 

variables) one variable, say , in a such a way that for all 

points  of the -dimensional Euclidean space  the 

characteristic equation (in ) 

 

(2) 

has exactly  real roots. Here  is a vector with 

non-negative integer coordinates,  is the order of the 



Notes 

25 

differential operator , , 

,  is the order of the system (1),  is a real square matrix of 

order , defined in , , , is an unknown 

column vector, and  is a vector with  components, defined in . 

A typical example is the wave equation 

 

(3) 

Many problems in mathematical physics reduce to linear hyperbolic 

partial differential equations or systems of equations. 

A subset  is said to be characteristic at a 

point  if  and , where 

 

is the characteristic form of the system (1). If , then one 

says that the vector  defines a characteristic direction or characteristic 

normal at the point . The surface  is called a characteristic surface (or 

characteristic) of the system (1) if 

 

A surface which does not have characteristic normals at any point is 

called a free surface. On a free surface the rank of the characteristic 

matrix 

 

is equal to , while on a characteristic surface  it is less than . A 

characteristic  is said to be simple if for some  and all , 

 

Otherwise the characteristic is said to be multiple. A characteristic is 

sometimes said to be simple if the rank of the 

matrix  is . 
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The system (1) is said to be hyperbolic at the point  with respect to the 

hyperplane :  if the matrix  is non-

singular (that is, the surface  is free) and if all roots 

, , of the characteristic equation  are real 

for all points . The system (1) is said to be hyperbolic in the 

domain  with respect to  if it is hyperbolic with respect to  at 

every point . 

An important class of hyperbolic equations and systems consists of 

strictly hyperbolic equations and systems, which are sometimes called 

fully hyperbolic systems, or systems, hyperbolic in the narrow sense. A 

system (1) is called a strictly hyperbolic system if all roots  of 

the characteristic equation are distinct for any non-zero vector . 

The characteristics of a strictly hyperbolic equation (or system) are 

simple. Strictly hyperbolic (with respect to ) systems are notable for 

the fact that the Cauchy problem 

 

(4) 

for them is well-posed under the single assumption of sufficient 

smoothness of the coefficients ,  of the system (1) and of 

the initial data (initial functions) , . There are 

examples of hyperbolic but not strictly hyperbolic equations of the form 

(1) (even with constant coefficients in front of the derivatives of order 

) for which the Cauchy problem is ill-posed. 

The solution  of the Cauchy problem (4) for the wave equation (3) 

can be written out explicitly, and when , and only then, 

it has the property that the value of  at the vertex  of the 

characteristic cone , , depends 

only on the value of the initial data  and  and their 

derivatives on the base , , of this cone (the so-

called Huygens principle). 

For strictly hyperbolic (with respect to ) equations and systems the 

question of the diffusion of waves and the related question of gaps have 
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been investigated (cf. Lacuna). An exhaustive answer has been given in 

the case of an equation with constant coefficients of the form 

 

For the case of one (scalar) equation with constant 

coefficients  the definition of strict hyperbolicity 

has been generalized as follows. Equation (1) is said to be hyperbolic 

with respect to a non-zero vector  if 

 

and if there is a real number  such that for 

all  and , 

 

Of all linear equations with constant coefficients, only for equations that 

are hyperbolic in this sense the Cauchy problem is well-posed for 

arbitrary sufficiently smooth initial functions defined on the hyperplane 

 

In particular, the wave equation (3) is hyperbolic in this sense with 

respect to any vector for which 

 

There are various generalizations of the definition of strict hyperbolicity 

of equations and systems. These are mainly equations and systems that 

are completely characterized by the fact that the Cauchy problem with 

data on a free surface is uniquely solvable for them for any sufficiently 

smooth initial functions, without any restrictions on the growth at 

infinity. 



Notes 

28 

Another important class of linear hyperbolic systems of the first order is 

the class of symmetric hyperbolic systems. The system 

 

(5) 

where ,  are square matrices of order , defined in , 

and  is an unknown vector of  components, is called a symmetric 

hyperbolic system in  if the matrices  are symmetric (or are 

symmetrizable simultaneously by the same transformation) and if at 

every point there is a spatially-oriented hyperplane (or, space-like 

hyperplane), that is, a hyperplane whose normal  has 

the property that the matrix  is positive definite. If for a 

symmetric hyperbolic system (5) with sufficiently smooth coefficients 

the given initial functions and the right-hand side have square-integrable 

generalized partial derivatives of order , then there is a unique 

generalized solution of the Cauchy problem with the same number of 

square-integrable partial derivatives. Any strictly hyperbolic partial 

differential equation of the second order reduces to a symmetric 

hyperbolic system. 

An equation (1) of the second order in the class of solutions regular in a 

domain  can be written in the form 

 

(6) 

where , , , and  are functions defined 

in . Equation (6) is hyperbolic in  if at every point of  all eigen 

values of the matrix of leading coefficients 

, , are non-zero, and one of these eigen values differs in 

sign from all others. With respect to (6), along with the characteristic 

surface one can distinguish two types of smooth surfaces: spatially-

oriented surfaces and time-oriented surfaces (also called space-like and 

time-like surfaces). If the surfaces are given by an equation of the 

form , then on a surface of the first type , 

while on a surface of the second type , where 
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The Cauchy problem for hyperbolic partial differential equations with 

initial data on a time-like surface is generally not well-posed. 

A hyperbolic partial differential equation 

 

is said to be uniformly (or regularly) hyperbolic in a domain  if there is 

a positive number  such that 

 

for all  in  and for any non-zero vector . 

For  the inequality 

 

is a necessary and sufficient condition for (6) to be uniformly hyperbolic 

in . The equation for the vibration of a string, 

 

is a typical representative of a linear uniformly hyperbolic partial 

differential equation of the second order with two independent variables. 

The general solution of this equation in any convex domain  of the 

plane  is given by the d'Alembert formula: 

 

where  and  are arbitrary functions. 

After a non-singular real change of variables  and , the hyperbolic 

partial differential equation (6) with  reduces to the normal 

(canonical) form 

 

(7) 
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For hyperbolic systems written in the form (7), where 

,  and  are given real square matrices of order ,  is a 

given vector and  an unknown vector, both with  components, the 

question of the well-posedness of the Cauchy problem with initial data 

on a non-characteristic (free) curve and the Goursat problem with data on 

two intersecting characteristics have been completely investigated by 

the Riemann method. 

The main problems about hyperbolic equations are the following: 

the Cauchy problem, the Cauchy characteristic problem and the mixed 

problem (see also Mixed and boundary value problems for hyperbolic 

equations and systems). 

In the investigation of the main problems an important role is played by 

fundamental solutions, which make it possible to obtain explicit 

(integral) representations of regular and generalized solutions and to 

establish their structural and qualitative properties, in particular to study 

the question of wave fronts and the propagation of discontinuities. 

Equation (6) is called an ultra-hyperbolic equation in a domain  if at 

every point  all eigen values of the matrix  are non-zero and 

at least two of them differ in sign from all the others, of which there are 

at least two. An example of an ultra-hyperbolic equation is an equation 

of the form 

 

(8) 

which has the following property: If  is a regular solution of (8) 

in a domain  of the Euclidean space of the variables 

,  and if  is an arbitrary point of , then the 

mean value of the function  calculated on the 

sphere  with centre at the  

 point  and radius , is equal to the mean value of 

the function  calculated on the  
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sphere  with centre at the 

point  and the same radius . This theorem is 

extensively used in the theory of linear hyperbolic partial differential 

equations of the second order with constant coefficients. 

 

1.6 SUMMARY 

 A system of linear differential equations is a set of linear 

equations relating a group of functions to their derivatives. 

Because they involve functions and their derivatives, each of 

these linear equations is itself a differential equation. For 

example, f′(x)=f(x)+g(x) is a linear equation relating 'f′ to f and g, 

but f′=fg is not, because the fg term is not linear. These equations 

can be solved by writing them in matrix form, and then working 

with them almost as if they were standard differential equations. 

 Describing Equations : There are usually more than two 

interrelated variables in a population study. Food resources, 

predators, climate conditions, … will all interact with population 

size and its rate of change. To keep things simple, we will look at 

two variables. 

 A partial differential equation (or system) of the form 

 

(1) 

for which at any point  of its domain of 

definition  one can distinguish among the real variables  (if 

necessary, after a suitable affine transformation of the independent 

variables) one variable 

 

1.7 KEYWORD 
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Partial Differential : Partial derivatives are defined as derivatives of a 

function of multiple variables when all but the variable of interest are 

held fixed during the differentiation. ... A differential equation 

expressing one or more quantities in terms of partial derivatives is called 

a partial differential equation. 

Lotks-Volterra : The Lotka–Volterra equations, also known as the 

predator–prey equations, are a pair of first-order nonlinear differential 

equations, frequently used to describe the dynamics of biological systems 

in which two species interact, one as a predator and the other as prey. 

Linear Hyperbolic : Linear hyperbolic partial differential equation and 

system. ... The system (1) is said to be hyperbolic at the point with 

respect to the hyperplane : if the matrix is non-singular (that is, the 

surface is free) and if all roots , , of the characteristic equation are real for 

all points  

 

1.8 EXERCISE 
 

Q. 1 Define systems of linear differential Equation.  

Q. 2 State and prove Adam‘s Equation.  

Q. 3 Define systems of Partial Differential Equation.  

Q. 4 Define system of linear hyperbolic partial differential equation.  

Q. 5 Define Stochastic differential equation.  

 

1.9 ANSWER TO CHECK IN PROGRESS 
 

Check In Progress-1 

Answer Q. 1 Check in section 3 

 Q. 2 Check in section 3.5 
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Check In progress-II 

Answer Q. 1 Check in section 5 

 Q. 2 Check in section 6 
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UNIT 2FIRST ODER ORDINARY 

DIFFERENTIAL EQUATIONS 
 

STRUCTURE 

2.0 Objective 

2.1 Introduction  

2.2 Differential Equation 

 2.2.1 First Order Ordinary Differential Equation 

2.3 Linear Ordinary Differential Equation 

2.4 Differential Equation, Ordinary 

2.5 Summary 

2.6 Keyword 

2.7 Exercise 

2.8 Answer to check in Progress 

2.9 Suggestion Reading and References 

2.0 OBJECTIVE 
 

 Learn first order differential equation 

 Learn differential equation 

 Learn Homogeneous Differential Equaion 

 Learn Solution of differential Equation 

2.1 INTRODUCTION 
 

In mathematics, an ordinary differential equation (ODE) is a differential 

equation containing one or more functions of one independent 

variable and the derivatives of those functions. The term ordinary is used 

in contrast with the term partial differential equation which may be with 

respect to more than one independent variable.  
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2.2 DIFFERENTIAL EQUATIONS 

 

 A linear differential equation is a differential equation that is 

defined by a linear polynomial in the unknown function and its 

derivatives, that is an equation of the form 

                  (x)y +    (x)    

 

e , ...,  and  are arbitrary differentiable functions that do not need 

to be linear, and  are the successive derivatives of the unknown 

function y of the variable x. 

 Among ordinary differential equations, linear differential 

equations play a prominent role for several reasons. 

Most elementary and special functions that are encountered 

in physics and applied mathematics are solutions of linear 

differential equations (see Holonomic function). When physical 

phenomena are modeled with non-linear equations, they are 

generally approximated by linear differential equations for an 

easier solution. The few non-linear ODEs that can be solved 

explicitly are generally solved by transforming the equation into 

an equivalent linear ODE (see, for example Riccati equation). 

 Some ODEs can be solved explicitly in terms of known functions 

and integrals. When that is not possible, the equation for 

computing the Taylor series of the solutions may be useful. For 

applied problems, numerical methods for ordinary differential 

equations can supply an approximation of the solution. 

 

2.2.1 First-Order Ordinary Differential Equation 

Given a first-order ordinary differential equation 

 

(1) 

if  can be expressed using separation of variables as 
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(2) 

then the equation can be expressed as 

 

(3) 

and the equation can be solved by integrating both sides to obtain 

 

(4) 

Any first-order ODE of the form 

 

(5) 

can be solved by finding an integrating factor  such that 

 

 

 

(6) 

   

(7) 

Dividing through by  yields 

 

(8) 

However, this condition enables us to explicitly determine the 

appropriate  for arbitrary  and . To accomplish this, take 

 

(9) 

in the above equation, from which we recover the original equation (◇), 

as required, in the form 

 

(10) 

But we can integrate both sides of (9) to obtain 

 

(11) 

 

(12) 
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Now integrating both sides of (◇) gives 

 

(13) 

(with  now a known function), which can be solved for  to obtain 

 

(14) 

where  is an arbitrary constant of integration. 

Given an th-order linear ODE with constant coefficients 

 

(15) 

first solve the characteristic equation obtained by writing 

 

(16) 

and setting  to obtain the  complex roots. 

 

(17) 

 

(18) 

Factoring gives the roots , 

 

(19) 

For a nonrepeated real root , the corresponding solution is 

 

(20) 

If a real root  is repeated  times, the solutions are degenerate and the 

linearly independent solutions are 

 

(21) 

Complex roots always come in complex conjugate pairs, . For 

nonrepeated complex roots, the solutions are 
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(22) 

If the complex roots are repeated  times, the linearly independent 

solutions are 

 

(23

) 

Linearly combining solutions of the appropriate types with arbitrary 

multiplicative constants then gives the complete solution. If initial 

conditions are specified, the constants can be explicitly determined. For 

example, consider the sixth-order linear ODE 

  

which has the characteristic equation 

  

The roots are 1, 2 (three times), and , so the solution is 

  

If the original equation is nonhomogeneous ( ), now find the 

particular solution  by the method of variation of parameters. The 

general solution is then 

 

(27) 

where the solutions to the linear equations are , , ..., , 

and  is the particular solution. 

Check In Progress-I 

Q. 1 Define first-order ordinary differential equation. 

Solution : . . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . .  . . . . . .  . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  . 

. . . . . . . . . . . . . . . . .  . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . 
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. . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .  . .  . . . . . . . . . . 

.  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

Q. 2 Define Differential Equation. 

Solution : . . .  . . . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . . . . . . . . . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . 

. . . . .  . . . . . . . …………. . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . …………. . .  . .  . . . . .  . . . . .  . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . .. . .  . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

 

2.3 LINEAR ORDINARY DIFFERENTIAL 

EQUATION 

 

An ordinary differential equation (cf. Differential equation, ordinary) that 

is linear in the unknown function of one independent variable and its 

derivatives, that is, an equation of the form 

 

(1) 

where  is the unknown function and ,  are given functions; 

the number  is called the order of equation (1) (below the general theory 

of linear ordinary differential equations is presented; for equations of the 

second order see also Linear ordinary differential equation of the second 

order). 

1) If in (1) the functions  are continuous on the 

interval , then for any 

numbers  and  there is a unique 

solution  of (1) defined on the whole interval  and satisfying 

the initial conditions 

 

The equation 
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(2) 

is called the homogeneous equation corresponding to the inhomogeneous 

equation (1). If  is a solution of (2) and 

 

then . If  are solutions of (2), then any linear 

combination 

 

is a solution of (2). If the  functions 

 

(3) 

are linearly independent solutions of (2), then for every solution  of 

(2) there are constants  such that 

 

(4) 

Thus, if (3) is a fundamental system of solutions of (2) (i.e. a system 

of  linearly independent solutions of (2)), then its general solution is 

given by (4), where  are arbitrary constants. For every non-

singular  matrix  and every  there is a 

fundamental system of solutions (3) of equation (2) such that 

 

For the functions (3) the determinant 

 

is called the Wronski determinant, or Wronskian. If (3) is a fundamental 

system of solutions of (2), then  for all . 

If  for at least one point , then  and the solutions 

(3) of equation (2) are linearly dependent in this case. For the Wronskian 
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of the solutions (3) of equation (2) the Liouville–Ostrogradski 

formula holds: 

 

The general solution of (1) is the sum of the general solution of the 

homogeneous equation (2) and a particular solution  of the 

inhomogeneous equation (1), and is given by the formula 

 

where  is a fundamental system of solutions of (2) 

and  are arbitrary constants. If a fundamental system of 

solutions (3) of equation (2) is known, then a particular solution of the 

inhomogeneous equation (1) can be found by the method of variation of 

constants. 

2) A system of linear ordinary differential equations of order  is a 

system 

 

or, in vector form, 

 

(5) 

where  is an unknown column vector,  is a square matrix 

of order  and  is a given vector function. Suppose also 

that  and  are continuous on some interval . In this case, 

for any  and  there is a unique solution  of the 

system (5) defined on the whole interval  and satisfying the initial 

condition . 

The linear system 

 

(6) 
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is called the homogeneous system corresponding to the inhomogeneous 

system (5). If  is a solution of (6) and , then ; 

if  are solutions, then any linear combination 

 

is a solution of (6); if  are linearly independent solutions 

of (6), then the vectors  are linearly independent for 

any . If the  vector functions 

 

(7) 

form a fundamental system of solutions of (6), then for every 

solution  of (6) there are constants  such that 

 

(8) 

Thus, formula (8) gives the general solution of (6). For 

any  and any linearly independent 

vectors  there is a fundamental system of solutions (7) of 

the system (6) such that 

 

For vector functions (7) that are solutions of (6), the determinant  of 

the matrix 

 

(9) 

where  is the -th component of the -th solution, is called the 

Wronski determinant, or Wronskian. If (7) is a fundamental system of 

solutions of (6), then  for all  and (9) is called a 

fundamental matrix. If the solutions (7) of the system (6) are linearly 

dependent for at least one point , then they are linearly dependent for 

any , and in this case . For the Wronskian of the 

solutions (7) of the system (6) Liouville's formula holds: 



Notes 

43 

 

where  is the trace of the 

matrix . The matrix (9) satisfies the matrix 

equation . If  is a fundamental matrix of the system 

(6), then for every other fundamental matrix  of this system there is 

a constant non-singular  matrix  such that . 

If , where  is the unit matrix, then the fundamental 

matrix  is said to be normalized at the point  and the 

formula  gives the solution of (6) satisfying the initial 

condition . 

If the matrix  commutes with its integral, then the fundamental 

matrix of (6) normalized at the point  is given by the formula 

 

In particular, for a constant matrix  the fundamental matrix normalized 

at the point  is given by the formula . The 

general solution of (5) is the sum of the general solution of the 

homogeneous system (6) and a particular solution  of (5) and is 

given by the formula 

 

where  is a fundamental system of solutions of (6) 

and  are arbitrary constants. If a fundamental system of 

solutions (7) of the system (6) is known, then a particular solution of the 

inhomogeneous system (5) can be found by the method of variation of 

constants. If  is a fundamental matrix of the system (6), then the 

formula 
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gives the solution of (5) satisfying the initial condition . 

3) Suppose that in the system (5) and (6)  and  are continuous 

on a half-line . All solutions of (5) are simultaneously either 

stable or unstable, so the system (5) is said to be stable (uniformly stable, 

asymptotically stable) if all its solutions are stable (respectively, 

uniformly stable, asymptotically stable, cf. Asymptotically-stable 

solution; Lyapunov stability). The system (5) is stable (uniformly stable, 

asymptotically stable) if and only if the system (6) is stable (respectively, 

uniformly stable, asymptotically stable). Therefore, in the investigation 

of questions on the stability of linear differential systems it suffices to 

consider only homogeneous systems. 

The system (6) is stable if and only if all its solutions are bounded on the 

half-line . The system (6) is asymptotically stable if and only 

if 

 

(10) 

for all its solutions . The latter condition is equivalent to (10) being 

satisfied for  solutions  of the system that form a 

fundamental system of solutions. An asymptotically-stable system (6) is 

asymptotically stable in the large. 

A linear system with constant coefficients 

 (11) 

is stable if and only if all eigen values  of  have non-positive 

real parts (that is, , ), and the eigen values with 

zero real part may have only simple elementary divisors. The system (11) 

is asymptotically stable if and only if all eigen values of  have negative 

real parts. 

4) The system 
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(12) 

where  is the transposed matrix of , is called the adjoint 

system of the system (6). If  and  are arbitrary solutions of (6) 

and (12), respectively, then the scalar product 

 

If  and  are fundamental matrices of solutions of (6) and (12), 

respectively, then 

 

where  is a non-singular constant matrix. 

5) The investigation of various special properties of linear systems, 

particularly the question of stability, is connected with the concept of 

the Lyapunov characteristic exponent of a solution and the first method 

in the theory of stability developed by A.M. Lyapunov (see Regular 

linear system; Reducible linear system; Lyapunov stability). 

6) Two systems of the form (6) are said to be asymptotically equivalent 

if there is a one-to-one correspondence between their 

solutions  and  such that 

 

If the system (11) with a constant matrix  is stable, then it is 

asymptotically equivalent to the system , where the 

matrix  is continuous on  and 

 

(13) 

If (13) is satisfied, the system  is asymptotically equivalent to 

the system . 

Two systems of the form (11) with constant coefficients are said to be 

topologically equivalent if there is a homeomorphism  that 

takes oriented trajectories of one system into oriented trajectories of the 
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other. If two square matrices  and  of order  have the same number 

of eigen values with negative real part and have no eigen values with 

zero real part, then the systems  and  are topologically 

equivalent. 

7) Suppose that in the system (6) the matrix  is continuous and 

bounded on the whole real axis. The system (6) is said to have 

exponential dichotomy if the space  splits into a direct 

sum: , , so that for every 

solution  with  the inequality 

 

holds, and for every solution  with  the inequality 

 

holds for all  and , where  and  are constants. 

For example, exponential dichotomy is present in a system (11) with 

constant matrix  if  has no eigen values with zero real part (such a 

system is said to be hyperbolic). If the vector function  is bounded 

on the whole real axis, then a system (5) having exponential dichotomy 

has a unique solution that is bounded on the whole line . 

 

Check In Progress-II 

Q. 1 Define linear ordinary differential equation.  

Solution : . . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . .  . . . . . .  . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  . 

. . . . . . . . . . . . . . . . .  . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . 

. . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .  . .  . . . . . . . . . . 

.  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

Q. 2 Define Wronski determinant. 

Solution : . . .  . . . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . . . . . . . . . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . 

. . . . .  . . . . . . . …………. . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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. . . . . . . . . . . . . . . . . . . . . …………. . .  . .  . . . . .  . . . . .  . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . .. . .  . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

 

2.4 DIFFERENTIAL EQUATION, 

ORDINARY 

 

An equation with a function in one independent variable as unknown, 

containing not only the unknown function itself, but also its derivatives 

of various orders. 

The term "differential equations" was was proposed in 1676 by G. 

Leibniz. The first studies of these equations were carried out in the late 

17th century in the context of certain problems in mechanics and 

geometry. 

Ordinary differential equations have important applications and are a 

powerful tool in the study of many problems in the natural sciences and 

in technology; they are extensively employed in mechanics, astronomy, 

physics, and in many problems of chemistry and biology. The reason for 

this is the fact that objective laws governing certain phenomena 

(processes) can be written as ordinary differential equations, so that the 

equations themselves are a quantitative expression of these laws. For 

instance, Newton's laws of mechanics make it possible to reduce the 

description of the motion of mass points or solid bodies to solving 

ordinary differential equations. The computation of radiotechnical 

circuits or satellite trajectories, studies of the stability of a plane in flight, 

and explaining the course of chemical reactions are all carried out by 

studying and solving ordinary differential equations. The most 

interesting and most important applications of these equations are in the 

theory of oscillations (cf. Oscillations, theory of) and in automatic 

control theory. Applied problems in turn produce new formulations of 

problems in the theory of ordinary differential equations; the 

mathematical theory of optimal control (cf. Optimal control, 

mathematical theory of) in fact arose in this manner. 
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In what follows the independent variable is denoted by , the unknown 

functions by , etc., while the derivatives of these functions with 

respect to  will be denoted by , etc. 

The simplest ordinary differential equation is already encountered in 

analysis: The problem of finding the primitive function of a given 

continuous function  amounts to finding an unknown 

function  which satisfies the equation 

                                               (1)  (1) 

In order to prove that this equation is solvable, a special apparatus had to 

be developed — the theory of the Riemann integral. 

A natural generalization of equation (1) is an ordinary differential 

equation of the first order, solved with respect to the derivative: 

                                              (2) (2) 

where  is a known function, defined in a certain region of 

the -plane. Many practical problems can be reduced to the solution 

(or, as is often said, the integration) of this equation. A solution of the 

ordinary differential equation (2) is a function  defined and 

differentiable on some interval  and satisfying the conditions 

 

 

The solution of (2) may be geometrically represented in the -plane 

as a curve with equation , . This curve is known as 

an integral curve, with a tangent at every point, and is totally contained 

in . The geometrical interpretation of equation (2) itself is as a field of 

directions in , obtained by drawing a segment  of small length with 

angular coefficient  through each point . Any integral 

curve  at each of its points is tangent to the segment . 

The existence theorem answers the question of the existence of a solution 

of equation (2): If  (i.e. is continuous in ), then at least 

one continuously-differentiable integral curve of equation (2) passes 
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through any point , and each such curve may be extended in 

both directions up to the boundary of any closed subregion lying 

completely in  and containing the point . In other words, for 

any point  it is possible to find at least one non-extendable 

solution , , such that  (i.e.  is continuous 

in  together with its derivative ), 

                                                    (3) (3) 

and  tends to the boundary of  as  tends to the right or left end of 

the interval . 

A very important theoretical problem is to clarify the assumptions to be 

made concerning the right-hand side of an ordinary differential equation 

and the additional conditions to be imposed on the equation in order that 

it has a unique solution. The following existence and uniqueness theorem 

is valid: If  satisfies a Lipschitz condition with respect 

to  in  and if , then equation (2) has a unique, non-

extendable solution satisfying condition (3). In particular, if two 

solutions , , and , , of such an equation (2) coincide 

for at least one value , i.e. , then 

 

The geometrical content of this theorem is that the entire region  is 

covered by integral curves of equation (2), with no intersections between 

any two curves. Unique solutions may also be obtained under weaker 

assumptions regarding the function  . 

The relation (3) is known as an initial condition. The 

numbers  and  are called initial values for the solution of equation 

(2), while the point  is called the initial point corresponding to 

the integral curve. The task of finding the solution of this equation 

satisfying initial condition (3) (or, in other words, with initial values 

, ) is known as the Cauchy problem or the initial value problem. The 

theorem just given provides sufficient conditions for the unique 

solvability of the Cauchy problem (2), (3). 
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Applied problems often involve systems of ordinary differential 

equations, containing several unknown functions of the same variable 

and their derivatives. A natural generalization of equation (2) is the 

normal form of a system of differential equations of order : 

                         (4) 
(4) 

where  are unknown functions of the variable  and 

, , are given functions in  variables. Writing 

                                                

 

the system (4) takes the vector form: 

                                             (5) (5) 

The vector function 

                                             (6) (6) 

is a solution of the system (4) or of the vector equation (5). Each solution 

can be represented in the -dimensional space  as an 

integral curve — the graph of the vector function (6). 

The Cauchy problem for equation (5) is to find the solution satisfying the 

initial conditions 

                                         (7) 

or 

 

(7) 

The solution of the Cauchy problem (5), (7) is conveniently written as 

 

(8) 

The existence and uniqueness theorem for equation (5) is formulated as 

for equation (2). 
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Very general systems of ordinary differential equations (solved with 

respect to the leading derivatives of all unknown functions) are reducible 

to normal systems. An important special class of systems (5) are linear 

systems of  (coupled) ordinary differential equations of the first order:                        

                                   (8) 

where  is an -dimensional matrix. 

Of major importance in applications and in the theory of ordinary 

differential equations are autonomous systems of ordinary differential 

equations (cf. Autonomous system): 

                                                   (9) (9) 

i.e. normal systems whose right-hand side does not explicitly depend on 

the variable . In such a case equation (6) is conveniently regarded as a 

parametric representation of a curve, by regarding the solution as the 

phase trajectory in the -dimensional phase space . 

If  is a solution of the system (9), the function , 

where  is an arbitrary constant, will also satisfy (9). 

Another generalization of equation (2) is an ordinary differential 

equation of order , solved with respect to its leading derivative: 

 

(10) 

An important special class of such equations are linear ordinary 

differential equations: 

                   (10) 

Equation (10) is reduced to a system of  first-order equations if one 

introduces new unknown functions of the variable  by the formulas 

 

If, for example, equation (10) describes the dynamics of a certain object 

and the motion of this object is to be studied starting from a definite 
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moment  corresponding to a definite initial state, the following 

additional conditions must be imposed on equation (10): 

                  (11) 
(11) 

The task of finding an  times differentiable function , , for 

which equation (10) becomes an identity for all  and which satisfies 

the initial conditions (11) is known as the Cauchy problem. 

The existence and uniqueness theorem: If 

 

if it satisfies a Lipschitz condition with respect to  and if 

 

then the Cauchy problem (10), (11) has a unique solution. 

The Cauchy problem does not account for all problems which have been 

studied for equations (10) of higher orders (or systems (5)). Specific 

physical and technological problems often do not involve initial 

conditions but rather supplementary conditions of different kinds (so-

called boundary conditions), when the values of the function  being 

sought and its derivatives (or relations between these derivatives) are 

given for certain different values of the independent variable. For 

instance, in the brachistochrone problem, the equation 

 

is to be integrated under the boundary conditions , . 

Finding a -periodic solution for the Duffing equation is reduced to 

extracting the solution which satisfies the periodicity 

conditions , ; in the study of laminar 

flow around a plate one encounters the problem: 

 

 

A problem of finding a solution satisfying conditions different from the 

initial conditions (11) for ordinary differential equations or for a system 
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of ordinary differential equations is known as a boundary value problem 

(cf. Boundary value problem, ordinary differential equations). The 

theoretical analysis of the existence and uniqueness of a solution of a 

boundary value problem is of importance to the practical problem 

involved, since it proves the mutual compatibility of the assumptions 

made in the mathematical description of the problem and the relative 

completeness of this description. One important boundary value problem 

is the Sturm–Liouville problem. Boundary value problems for linear 

equations and systems are closely connected with problems involving 

eigen values and eigen functions (cf. Eigen function; Eigen value) and 

also with the spectral analysis of ordinary differential operators. 

The principal task of the theory of ordinary differential equations is the 

study of solutions of such equations. However, the meaning of such a 

study of solutions of ordinary differential equations has been understood 

in various ways at different times. The original trend was to carry out the 

integration of equations in quadratures, i.e. to obtain a closed formula 

yielding (in explicit, implicit or parametric form) an expression for the 

dependence of a specific solution on  in terms of elementary functions 

and their integrals. Such formulas, if found, are of help in calculations 

and in the study of the properties of the solutions. Of special interest is 

the description of the totality of solutions of a given equation. Under 

very general assumptions, equation (5) corresponds to a family of vector 

functions depending on  arbitrary independent parameters. If the 

equation of this family has the form 

 

the function  is said to be the general solution of equation (5). 

However, the first examples of ordinary differential equations which are 

not integrable in quadratures appeared in mid-19th century. It was found 

that solutions in closed form can be found for a few classes of equations 

only (see, for example, Bernoulli equation; Differential equation with 

total differential; Linear ordinary differential equation with constant 

coefficients). A detailed study was then begun of the most important and 

frequently encountered equations which cannot be solved in quadratures 

(e.g. the Bessel equation), special notation was introduced for such 
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equations, their properties were studied and their values were tabulated. 

Many special functions appeared in this way. 

Because of practical demands, methods of approximate integration of 

ordinary differential equations were also developed, such as the method 

of sequential approximation (cf. Sequential approximation, method of), 

the Adams method, etc. Various methods for graphical and mechanical 

integration of these equations were proposed. Mathematical analysis 

offers of a rich selection of numerical methods for solving many 

problems in ordinary differential equations (cf. Differential equations, 

ordinary, approximate methods of solution of). These methods are 

convenient computational algorithms with effective estimates of 

accuracy, and the modern computational techniques make it possible to 

obtain a numerical solution to each such problem in an economical and 

rapid manner. 

However, the application of numerical methods to a specific equation 

yields only a finite number of particular solutions on a finite segment of 

variation of the independent variable. They cannot yield information 

about the asymptotic behaviour of the solutions, and cannot tell if a 

certain equation has a periodic solution or an oscillating solution. It is 

often important in many practical problems to establish the nature of the 

solution on an infinite interval of variation of the independent variable, 

and to obtain a complete picture of the integral curves. For this reason, 

the main trend in the theory of ordinary differential equations underwent 

a switchover to the study of the general features in the behaviour of 

solutions of ordinary differential equations, and to the development of 

methods for studying the global properties of solutions from the 

differential equation itself, without recourse to its integration. 

All this formed the subject matter of the qualitative theory of differential 

equations, established in the late 19th century and still in full 

development. 

Of decisive importance is the clarification as to whether or not the 

Cauchy problem is a well-posed problem for an ordinary differential 

equation. Since in concrete problems the initial values can never be 

perfectly exact, it is important to find the conditions under which small 



Notes 

55 

changes in initial values entail only small changes in the results. The 

theorem on continuous dependence of the solutions on initial values is 

valid: Let (8) be the solution of equation (5), where  and 

let it satisfy a Lipschitz condition with respect to ; then, for 

any  and any compact , , it is possible to find 

a  such that the solution  of this equation, 

where , is defined on  and for all , 

 

(12) 

In other words, if the variations of the independent variable are restricted 

to a compact interval, then, if the variations in the initial values are 

sufficiently small, the solution will vary only slightly on the complete 

interval chosen. This result may also be generalized to obtain conditions 

which would ensure the differentiability of solutions (of differential 

equations) with respect to the initial values. 

However, this theorem fails to give a complete answer to the problem 

which is of interest in practical applications, since it only speaks about a 

compact segment of variation of the independent variable. Now it is 

often necessary (e.g. in the theory of controlled motion) to deal with the 

solution of the Cauchy problem (5), (7) defined for all , i.e. to 

clarify the stability of the solution with respect to small changes in the 

initial values on the entire infinite interval , i.e. to obtain conditions 

which would ensure the validity of inequality (12) for all . Studies 

of the stability of equilibrium positions or of the stationary conditions of 

a concrete system are reduced to this very problem. A solution which 

varies only to a small extent on the infinite interval  if the 

deviations from the initial values are sufficiently small is said to be 

Lyapunov stable (cf. Lyapunov stability). 

In selecting an ordinary differential equation to describe a real process, 

some features must always be be neglected and others idealized. This 

means that a description of a process by ordinary differential equations is 

only approximate. For instance, the study of the operation of a valve 

oscillator leads to the van der Pol equation if certain assumptions, which 

do not fully correspond to the real state of things, are made. Furthermore, 
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the course of the process is often affected by perturbing factors which are 

practically impossible to allow for in setting up equations; all that is 

known is that their effect is "small" . It is therefore important to clarify 

the variation of the solution as a result of small variations in the system 

of equations itself, i.e. on passing from equation (5) to the perturbed 

equation 

 

which allows for small correction terms. It was found that on a compact 

interval the variations of the independent variable (under the same 

assumptions as in the theorem of continuous dependence of the solutions 

on the initial values) produce only small variations in the solution 

provided the perturbation  is sufficiently small. If this property is 

retained on the infinite interval , the solution is said to be stable 

under constantly acting perturbations. 

Studies of Lyapunov stability, stability under constantly acting 

perturbations and their modifications form the subject of a highly 

important branch of the qualitative theory — stability theory. Of 

foremost interest in practice are systems of ordinary differential 

equations whose solutions change little for all small variations of these 

equations; such systems are known as robust systems (cf. Rough system). 

Another important task in the qualitative theory is to obtain a pattern of 

the behaviour of the family of solutions throughout the domain of 

definition of the equation. In the case of the autonomous system (9) the 

problem is the construction of a phase picture, i.e. a qualitative overall 

description of the totality of phase trajectories in the phase space. Such a 

geometric picture gives a complete representation of the nature of all 

motions which may take place in the system under study. It is therefore 

important, first of all, to clarify the behaviour of the trajectories in a 

neighbourhood of equilibrium positions, and to find separatrices 

(cf. Separatrix) and limit cycles (cf. Limit cycle). An especially urgent 

task is to find stable limit cycles, since these correspond to auto-

oscillations in real systems (cf. Auto-oscillation). 
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Any real object is characterized by different parameters, which often 

enter into the right-hand side of the system of ordinary differential 

equations describing the behaviour of the object, 

 

(13) 

in the form of certain quantities . The values of these 

parameters are never known with perfect accuracy, so that it is important 

to clarify the conditions ensuring the stability of the solutions of equation 

(13) to small perturbations of the parameter . If the independent variable 

varies in a given compact interval, then — under certain natural 

assumptions regarding the right-hand side of equation (13) — the 

solutions will show a continuous (and even differentiable) dependence 

on the parameters. 

The clarification of the dependence of the solutions on the parameter is 

directly related to the question of the quality of the idealization leading to 

the mathematical model of the behaviour of the object — the system of 

ordinary differential equations. A typical example of idealization is the 

neglect of a small parameter. If, with allowance for this small parameter, 

the system (13) is obtained, then, owing to the fact that the variation of 

the solutions with the parameter is continuous, it is perfectly permissible 

to neglect this parameter in the study of the behaviour of the object on a 

compact interval of time. Thus, as a first approximation, one is 

considering the simpler system 

 

This result is the principle of the extensively employed method of small 

parameters (cf. Small parameter, method of the); the Krylov–

Bogolyubov method of averaging and other asymptotic methods for 

solving ordinary differential equations. However, the study of a number 

of phenomena yields a system of differential equations with small 

parameter in front of the derivative: 
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Here it is in general no longer permissible to assume that , even if it 

is attempted to construct a rough representation of the phenomenon on a 

compact interval of time. 

The theory of ordinary differential equations considers certain fruitful 

important generalizations of the problems outlined above. First, one may 

extend the class of functions within which the solution of the Cauchy 

problem (2), (3) is sought: Determine the solution in the class of 

absolutely-continuous functions and prove the existence of such 

solutions. Of special practical interest is to find the solution of equation 

(2) if the function  is discontinuous or many-valued with respect 

to . The most general problem in this respect is the problem of solving 

a differential inclusion. 

Also under consideration are ordinary differential equations of 

order  more general than (10), which are unsolved with respect to the 

leading derivative 

 

Studies of this equation are closely connected with the theory of implicit 

functions. 

Equation (2) connects the derivative of the solution at a point  with the 

value of the solution at this point: , but certain applied 

problems (e.g. those in which allowance must be made for a delaying 

effect of the executing mechanism) yield retarded ordinary differential 

equations (cf. Differential equations, ordinary, retarded): 

 

in which the derivative of the solution at a point  is connected with the 

value of the solution at a point . A special section of the theory of 

ordinary differential equations deals with such equations, and also with 

the more general ordinary differential equations with distributed 

arguments (cf. Differential equations, ordinary, with distributed 

arguments). 

The study of the phase space of the autonomous system (9) leads to yet 

another generalization of ordinary differential equations. Denote 
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by  the trajectory of this system passing through the 

point . If the point  is mapped to the point , one obtains a 

transformation of the phase space depending on the parameter  which 

determines the motion in this space. The properties of such motions are 

studied in the theory of dynamical systems. They may be studied not 

only in Euclidean space but also on manifolds; an example 

are differential equations on a torus. 

Above ordinary differential equations in the field of real numbers have 

been considered (e.g. finding a real-valued function  of a real 

variable  satisfying equation (2)). However, certain properties of such 

equations are more conveniently studied with the aid of complex 

numbers. A natural further generalization is the study of ordinary 

differential equations in the field of complex numbers. Thus, one may 

consider the equation 

 

where  is an analytic function of its variables, and pose the 

problem of finding an analytic function  in the complex 

variable  which would satisfy this equation. The study of such 

equations, equations of higher orders and systems forms the subject of 

the analytic theory of differential equations; in particular, it contains 

results of importance to mathematical physics, concerning linear ordinary 

differential equations of the second order (cf. Linear ordinary differential 

equation of the second order). 

One may also consider the equation 

 

(14) 

on the assumption that  belongs to an infinite-dimensional Banach 

space ,  is a real or complex independent variable and  is an 

operator mapping the product  into . Equation 

(14) may serve in processing, for example, systems of ordinary 

differential equations of infinite order (cf. Differential equations, infinite-

order system of). Equations of the type (14) are studied in the theory of 

abstract differential equations (cf. Differential equation, abstract), which 
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is the meeting point of ordinary differential equations and functional 

analysis. Of major interest are linear differential equations of the form 

 

with bounded or unbounded operators; certain classes of partial 

differential equations (cf. Differential equation, partial) can be written in 

the form of such an equation. 

2.5 SUMMARY 
In this unit we study  

Given a first-order ordinary differential equation 

 

 

if  can be expressed using separation of variables as 

 

The Cauchy problem  is to find the solution satisfying the initial 

conditions 

                                         

A first approximation, one is considering the simpler system 

 

This result is the principle of the extensively employed method of small 

parameters. 

 

 

2.6 KEYWORD 
Infinite-Dimensional : This approach consists in the extension of 

the definition of small and large inductive dimensions to infinite ordinal 

numbers 

Dynamical Systems : A dynamical system is a system in which a 

function describes the time dependence of a point in a geometrical space 
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Bernoulli equation : The Bernoulli Equation can be considered to be a 

statement of the conservation of energy principle appropriate for flowing 

fluids. The qualitative behavior that is usually labeled with the term 

"Bernoulli effect" is the lowering of fluid pressure in regions where the 

flow velocity is increased. 

2.7 EXERCISE 
 

Q. 1 Define linear ordinary differential equation. 

Q. 2 Define first-order ordinary differential equation. 

Q. 3 Define Cauchy Problem of ordinary differential equation. 

Q. 4 Solve fundamental matrix system.  

 

2.8 ANSWER TO CHECK IN PROGRESS 
Check In Progress-1 

Answer Q. 1 Check in section 3.1 

 Q. 2 Check in section 3 

Check In progress-II 

Answer Q. 1 Check in section 4 

 Q. 2 Check in section 4 
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3.0 OBJECTIVE 
 

 In this unit we study second order differential equation with its 

properties and examples.  

 We study basic concept of second order ordinary differential 

equation. We study In general, little is known about nonlinear 

second order differential equations 

, 

 We study Linear Second Order Differential Equations 

 We shall also study Method of Undetermined Coefficient or 

Guessing Method 

3.1 INTRODUCTION 

A second order differential equation is an equation involving the 

unknown function y, its derivatives y' and y'', and the variable x. We will 

only consider explicit differential equations of the form, 

 

3.2 SECOND ORDER DIFFERENTIAL 

EQUATIONS 

 

In the previous chapter we looked at first order differential equations. In 

this chapter we will move on to second order differential equations. Just 

as we did in the last chapter we will look at some special cases of second 

order differential equations that we can solve. Unlike the previous 

chapter however, we are going to have to be even more restrictive as to 

the kinds of differential equations that we‘ll look at. This will be required 

in order for us to actually be able to solve them. 

Here is a list of topics that will be covered in this chapter. 

Basic Concepts – In this section give an in depth discussion on the 

process used to solve homogeneous, linear, second order differential 
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equations, ay′′+by′+cy=0ay″+by′+cy=0. We derive the characteristic 

polynomial and discuss how the Principle of Superposition is used to get 

the general solution. 

Real Roots – In this section we discuss the solution to homogeneous, 

linear, second order differential equations, ay′′+by′+cy=0ay″+by′+cy=0, 

in which the roots of the characteristic 

polynomial, ar2+br+c=0ar2+br+c=0, are real distinct roots. 

Complex Roots – In this section we discuss the solution to 

homogeneous, linear, second order differential 

equations, ay′′+by′+cy=0ay″+by′+cy=0, in which the roots of the 

characteristic polynomial, ar2+br+c=0ar2+br+c=0, are complex roots. 

We will also derive from the complex roots the standard solution that is 

typically used in this case that will not involve complex numbers. 

Repeated Roots – In this section we discuss the solution to 

homogeneous, linear, second order differential 

equations, ay′′+by′+cy=0ay″+by′+cy=0, in which the roots of the 

characteristic polynomial, ar2+br+c=0ar2+br+c=0, are 

repeated, i.e. double, roots. We will use reduction of order to derive the 

second solution needed to get a general solution in this case. 

Reduction of Order – In this section we will take a brief look at the 

topic of reduction of order. This will be one of the few times in this 

chapter that non-constant coefficient differential equation will be looked 

at. 

Fundamental Sets of Solutions – In this section we will a look at some 

of the theory behind the solution to second order differential equations. 

We define fundamental sets of solutions and discuss how they can be 

used to get a general solution to a homogeneous second order differential 

equation. We will also define the Wronskian and show how it can be 

used to determine if a pair of solutions are a fundamental set of solutions. 

More on the Wronskian – In this section we will examine how the 

Wronskian, introduced in the previous section, can be used to determine 
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if two functions are linearly independent or linearly dependent. We will 

also give and an alternate method for finding the Wronskian. 

Nonhomogeneous Differential Equations – In this section we will 

discuss the basics of solving nonhomogeneous differential equations. We 

define the complimentary and particular solution and give the form of the 

general solution to a nonhomogeneous differential equation. 

Undetermined Coefficients – In this section we introduce the method of 

undetermined coefficients to find particular solutions to 

nonhomogeneous differential equation. We work a wide variety of 

examples illustrating the many guidelines for making the initial guess of 

the form of the particular solution that is needed for the method. 

Variation of Parameters – In this section we introduce the method of 

variation of parameters to find particular solutions to nonhomogeneous 

differential equation. We give a detailed examination of the method as 

well as derive a formula that can be used to find particular solutions. 

Mechanical Vibrations – In this section we will examine mechanical 

vibrations. In particular we will model an object connected to a spring 

and moving up and down. We also allow for the introduction of a damper 

to the system and for general external forces to act on the object. Note as 

well that while we example mechanical vibrations in this section a 

simple change of notation (and corresponding change in what the 

quantities represent) can move this into almost any other engineering 

field. 

3.3 SECOND-ORDER ORDINARY 

DIFFERENTIAL EQUATION 

An ordinary differential equation of the form 

 

(1) 

Such an equation has singularities for finite  under the following 

conditions: (a) If either  or  diverges as , 

but  and  remain finite as , then  is called 
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a regular or nonessential singular point. (b) If  diverges faster 

than  so that  as , or  diverges faster 

than  so that  as , then  is called an 

irregular or essential singularity. 

Singularities of equation (1) at infinity are investigated by making the 

substitution , so , giving 

 

(2) 

 

 

 

(3) 

  

 

(4) 

  

 

(5) 

Then (3) becomes 

 

(6) 

Case (a): If 

  

 

(7) 

  

 

(8) 

remain finite at  ( ), then the point is ordinary. Case (b): If 

either  diverges no more rapidly than  or  diverges no more 

rapidly than , then the point is a regular singular point. Case (c): 

Otherwise, the point is an irregular singular point. 

Morse and Feshbach (1953, pp. 667-674) give the canonical forms and 

solutions for second-order ordinary differential equations classified by 

types of singular points. 

For special classes of linear second-order ordinary differential equations, 

variable coefficients can be transformed into constant coefficients. Given 

a second-order linear ODE with variable coefficients 
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(9) 

Define a function , 

 

(10) 

 

(11) 

 

(12) 

 

(13) 

 

(14) 

This will have constant coefficients if  and  are not functions of . But 

we are free to set  to an arbitrary positive constant for  by 

defining  as 

 

(15) 

Then 

 

 

 

(16) 

 

 

 

(17) 

and 

  

 

(18) 

  

 

(19) 

Equation (◇) therefore becomes 

 

(20) 

which has constant coefficients provided that 
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(21) 

Eliminating constants, this gives 

 

(22) 

So for an ordinary differential equation in which  is a constant, the 

solution is given by solving the second-order linear ODE with 

constant coefficients 

 

(23) 

for , where  is defined as above. 

A linear second-order homogeneous differential equation of the general 

form 

 

(24) 

can be transformed into standard form 

 

(25) 

with the first-order term eliminated using the substitution 

 

(26) 

Then 

 

(27) 

 

(28) 

 

(29) 

 

(30) 

 

(31) 

so 
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(32) 

  

 

(33) 

Therefore, 

 

(34) 

where 

 

(35) 

If , then the differential equation becomes 

 

(36) 

which can be solved by multiplying by 

 

(37) 

to obtain 

 

(38) 

 

(39) 

 

(40) 

For a nonhomogeneous second-order ordinary differential equation in 

which the  term does not appear in the function , 

 

(41) 

let , then 

 

(42) 

So the first-order ODE 



Notes 

71 

 

(43) 

if linear, can be solved for  as a linear first-order ODE. Once the 

solution is known, 

 

(44) 

 

(45) 

On the other hand, if  is missing from , 

 

(46) 

let , then , and the equation reduces to 

 

(47) 

which, if linear, can be solved for  as a linear first-order ODE. Once the 

solution is known, 

 

(48) 

Nonhomogeneous ordinary differential equations can be solved if the 

general solution to the homogenous version is known, in which 

case variation of parameters can be used to find the particular solution. In 

particular, the particular solution  to a nonhomogeneous second-

order ordinary differential equation 

 

(49) 

can be found using variation of parameters to be given by the equation 

 

(50) 

where  and  are the homogeneous solutions to the unforced 

equation 

 

(51) 
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and  is the Wronskian of these two functions. 

 Check In Progress-I 

Q. 1 Define second-order ordinary differential equation. 

Solution : . . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . .  . . . . . .  . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  . 

. . . . . . . . . . . . . . . . .  . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . 

. . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .  . .  . . . . . . . . . . 

.  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

Q. 2 Define non-homogeneous  Differential Equation. 

Solution : . . .  . . . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . . . . . . . . . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . 

. . . . .  . . . . . . . …………. . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . …………. . .  . .  . . . . .  . . . . .  . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . .. . .  . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

 

3.4 NONLINEAR SECOND ORDER 

DIFFERENTIAL EQUATIONS 

In general, little is known about nonlinear second order differential 

equations 

, 

but two cases are worthy of discussion: 

(1) Equations with the y missing 

 

Let v = y'. Then the new equation satisfied by v is 
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This is a first order differential equation. Once v is found its 

integration gives the function y. 

Example 1: Find the solution of 

 

Solution: Since y is missing, set v=y'. Then, we have 

 

This is a first order linear differential equation. Its resolution 

gives 

 

Since v(1) = 1, we get  . Consequently, we have 

 

Since y'=v, we obtain the following equation after integration 

 

The condition y(1) = 2 gives  . Therefore, we have 

 

Note that this solution is defined for x > 0. 

(2)Equations with the x missing 

 

Let v = y'. Since 
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we get 

 

This is again a first order differential equation. Once v is found 

then we can get y through 

 

which is a separable equation. Beware of the constants solutions. 

Example 2: Find the general solution of the equation 

 

Solution: Since the variable x is missing, set v=y'. The formulas 

above lead to 

 

This a first order separable differential equation. Its resolution 

gives 

 

Since  , we get y' = 0 or 

 

Since this is a separable first order differential equation, we get, 

after resolution, 
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, 

where C and  are two constants. All the solutions of our initial 

equation are 

 

Note that we should pay special attention to the constant solutions 

when solving any separable equation. This may be source of 

mistakes... 

3.5 LINEAR SECOND ORDER 

DIFFERENTIAL EQUATIONS 

A linear second order differential equations is written as 

 

When d(x) = 0, the equation is called homogeneous, otherwise it is 

called nonhomogeneous. To a nonhomogeneous equation 

, 

we associate the so called associated homogeneous equation 

 

For the study of these equations we consider the explicit ones given by 

 

where p(x) = b(x)/a(x), q(x) = c(x)/a(x) and g(x) = d(x)/a(x). If p(x), q(x) 

and g(x) are defined and continuous on the interval I, then the IVP 

, 
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where  and  are arbitrary numbers, has a unique solution 

defined on I. 

Main result: The general solution to the equation (NH) is given by 

, 

where 

(i)  is the general solution to the homogeneous associated equation (H); 

(ii)  is a particular solution to the equation (NH). 

In conclusion, we deduce that in order to solve the nonhomogeneous 

equation (NH), we need to 

Step 1: find the general solution to the homogeneous associated 

equation (H), say  ; 

Step 2: find a particular solution to the equation (NH), say  ; 

Step 3: write down the general solution to (NH) as 

 

3.5.1 Homogeneous Linear Equations 

Consider the homogeneous second order linear equation 

 

or the explicit one 

 

Basic property:If  and  are two solutions, then 

 

is also a solution for any arbitrary constants  . 

The natural question to ask is whether any solution y is equal 

to  for some  and . 
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3.5.2 Linear Independence and the Wronskian 

Let  and  be two differentiable functions. 

The Wronskian  , associated to  and  , is the function 

 

We have the following important properties: 

(1)If  and  are two solutions of the equation y'' + p(x)y' + q(x)y = 0, 

then 

 

(2)If  and  are two solutions of the equation y'' + p(x)y' + q(x)y = 0, 

then 

 

In this case, we say that  and  are linearly independent. 

(3)If  and  are two linearly independent solutions of the equation y'' 

+ p(x)y' + q(x)y = 0, then any solution y is given by 

 

for some constant  and  . In this case, the set  is 

called the fundamental set of solutions. 

Example: Let  be the solution to the IVP 

 

and  be the solution to the IVP 

 

Find the Wronskian of  . Deduce the general solution to 
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Solution: Let us write  . We know from the 

properties that 

 

Let us evaluate W(0). We have 

 

Therefore, we have 

 

Since  , we deduce that  is a fundamental set of 

solutions. Therefore, the general solution is given by 

, 

where  are arbitrary constants. 

3.5.3 Reduction of Order Technique 

This technique is very important since it helps one to find a second 

solution independent from a known one. Therefore, according to 

the previous section, in order to find the general solution to y'' + p(x)y' 

+ q(x)y = 0, we need only to find one (non-zero) solution,  . 

Let  be a non-zero solution of 

 

Then, a second solution  independent of  can be found as 
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Easy calculations give 

, 

where C is an arbitrary non-zero constant. Since we are looking for a 

second solution one may take C=1, to get 

 

Remember that this formula saves time. But, if you forget it you will 

have to plug  into the equation to determine v(x) which may lead 

to mistakes ! 

The general solution is then given by 

 

Example: Find the general solution to the Legendre equation 

, 

using the fact that  is a solution. 

Solution: It is easy to check that indeed  is a solution. First, we 

need to rewrite the equation in the explicit form 

 

We may try to find a second solution  by plugging it into 

the equation. We leave it to the reader to do that! Instead let us use the 

formula 

 

Techniques of integration (of rational functions) give 
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, 

which gives 

 

The general solution is then given by 

 

Check In Progress-II 

Q. 1 Find the general solution of the equation 

 

Solution : . . . . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . .  . . . . . .  . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . ………. . .  . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . .  . . . . . . . …………. . .  . . . . . . . . . . . . .  . . . . . . . . . . . .  

Q. 2 Find the general solution to the Legendre equation 

, 

using the fact that  is a solution. 

Solution : . . .  . . . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . . . . . . . . . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . 

. . . . .  . . . . . . . …………. . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . …………. . .  . .  . . . . .  . . . . .  . . . . . . . . . . . . .  

3.6 HOMOGENEOUS LINEAR 

EQUATIONS WITH CONSTANT 

COEFFICIENTS 
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A second order homogeneous equation with constant coefficients is 

written as 

 

where a, b and c are constant. This type of equation is very useful in 

many applied problems (physics, electrical engineering, etc..). Let us 

summarize the steps to follow in order to find the general solution: 

(1) Write down the characteristic equation 

 

This is a quadratic equation. Let  and  be its roots  we 

have   ; 

(2) If  and  are distinct real numbers (this happens 

if  ), then the general solution is 

 

(3) If  (which happens if  ), then the general 

solution is 

 

(4) If  and  are complex numbers (which happens 

if  ), then the general solution is 

 

where 

, 

that is, 



Notes 

82 

 

Example: Find the solution to the IVP 

 

Solution: Let us follow the steps: 

1 Characteristic equation and its roots 

 

Since 4-8 = -4<0, we have complex roots  . 

Therefore,  and  ; 

2 General solution 

; 

3 In order to find the particular solution we use the initial conditions to 

determine  and  . First, we have 

. 

Since 

 , we get 

 

From these two equations we get 

, 

which implies 
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3.6.1 Non-homogeneous Second Order Linear 

Equations 

Let us go back to the non-homogeneous second order linear equations 

 

Recall that the general solution is given by 

 

where  is a particular solution of (NH) and  is the general 

solution of the associated homogeneous equation 

 

In the previous sections we discussed how to find  . In this section we 

will discuss two major techniques giving  : 

3.6.2  Method of Undetermined Coefficient or 

Guessing Method 

This method is based on a guessing technique. That is, we will guess the 

form of  and then plug it in the equation to find it. However, it works 

only under the following two conditions: 

Condition 1: the associated homogeneous equations has constant 

coefficients; 

Condition 2: the nonhomogeneous term g(x) is a special form 

 

where P(x) and L(x) are polynomial functions. 

Note that we may assume that g(x) is a sum of such functions (see the 

remark below for more on this). 

Assume that the two conditions are satisfied. Consider the equation 
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where a, b and c are constants and 

 

where  is a polynomial function with degree n. Then a particular 

solution  is given by 

 

where 

, 

where the constants  and  have to be determined. The power s is 

equal to 0 if  is not a root of the characteristic equation. 

If  is a simple root, then s=1 and s=2 if it is a double root. 

Remark: If the nonhomogeneous term g(x) satisfies the following 

 

where  are of the forms cited above, then we split the original 

equation into N equations 

 

then find a particular solution  . A particular solution to the original 

equation is given by 

 

Summary:Let us summarize the steps to follow in applying this method: 
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(1)First, check that the two conditions are satisfied; 

(2)If the equation is given as 

, 

where  or 

where  is a polynomial function with 

degree n, then split this equation into N equations 

; 

(3)Write down the characteristic equation , and find 

its roots; 

(4)Write down the number  . Compare this number to the roots 

of the characteristic equation found in previous step. 

(4.1)If  is not one of the roots, then set s = 0; 

(4.2)If  is one of the two distinct roots, set s = 1; 

(4.3)If  is equal to both root (which means that the 

characteristic equation has a double root), set s=2. 

In other words, s measures how many times  is a root of the 

characteristic equation; 

(5)Write down the form of the particular solution 

 

where 

 

(6)Find the constants  and  by plugging  into the equation 
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(7)Once all the particular solutions  are found, then the particular 

solution of the original equation is 

 

3.6.3 Method of Undetermined Coefficients 

Example: Find a particular solution to the equation 

 

Solution: Let us follow these steps: 

(1)First, we notice that the conditions are satisfied to invoke the 

method of undetermined coefficients. 

(2)We split the equation into the following three equations: 

 

(3)The root of the characteristic 

equation  are r=-1 and r=4. 

(4.1)Particular solution to Equation (1): 

Since , and  , then , which is not one of 

the roots. Then s=0. 

The particular solution is given as 

 

If we plug it into the equation (1), we get 

, 

which implies A = -1/2, that is, 

 

(4.2)Particular solution to Equation (2): 
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Since , and  , then , which is not one of the 

roots. Then s=0. 

The particular solution is given as 

 

If we plug it into the equation (2), we get 

which implies 

 

Easy calculations give , and , that is 

 

(4.3)Particular solution to Equation (3): 

Since , and  , then  which is one of the 

roots. Then s=1. 

The particular solution is given as 

 

If we plug it into the equation (3), we get 

, 

which implies , that is 

 

(5)A particular solution to the original equation is 
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3.6.4 Method of Variation of Parameters 

This method has no prior conditions to be satisfied. Therefore, it may 

sound more general than the previous method. We will see that this 

method depends on integration while the previous one is purely algebraic 

which, for some at least, is an advantage. 

Consider the equation 

 

In order to use the method of variation of parameters we need to know 

that  is a set of fundamental solutions of the associated 

homogeneous equation y'' + p(x)y' + q(x)y = 0. We know that, in this 

case, the general solution of the associated homogeneous equation 

is  . The idea behind the method of variation of 

parameters is to look for a particular solution such as 

 

where  and  are functions. From this, the method got its name. 

The functions  and  are solutions to the system 

, 

which implies 

, 

where  is the wronskian of  and . Therefore, we have 
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Summary:Let us summarize the steps to follow in applying this method: 

(1)Find  a set of fundamental solutions of the associated 

homogeneous equation 

y'' + p(x)y' + q(x)y = 0. 

(2)Write down the form of the particular solution 

; 

(3)Write down the system 

; 

(4)Solve it. That is, find  and ; 

(5)Plug  and  into the equation giving the particular solution. 

Example: Find the particular solution to 

 

Solution: Let us follow the steps: 

(1)A set of fundamental solutions of the equation y'' + y = 0 

is  ; 

(2)The particular solution is given as 

 

(3)We have the system 

 ; 

(4)We solve for  and  , and get 
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Using techniques of integration, we get 

 ; 

(5)The particular solution is: 

 

or 

 

Remark: Note that since the equation is linear, we may still split if 

necessary. For example, we may split the equation 

, 

into the two equations 

 

then, find the particular solutions  for (1) and  for (2), to generate a 

particular solution for the original equation by 

 

There are no restrictions on the method to be used to find  or  . For 

example, we can use the method of undetermined coefficients to find , 

while for , we are only left with the variation of parameters. 

 

3.7 SUMMARY 

In this unit we study An ordinary differential equation of the form 

 

 
Such an equation has singularities for finite  

We study about nonlinear second order differential equations 
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We study A linear second order differential equations  

 

When d(x) = 0, the equation is called homogeneous, otherwise it is 

called non-homogeneous. 

 

We learn the homogeneous second order linear equation 

 

3.8 KEYWORD 
 

Homogeneous : of the same kind; alike, denoting a process involving ... 

Homogenous is a different word, a specialized biological term meaning 

Non-Homogeneous : made up of different types of people or things : 

not homogeneous nonhomogeneous neighborhoods the nonhomogenous 

atmosphere of the planet a nonhomogenous distribution of particles. 

Variation of Parameters : a method for solving a differential equation by 

first solving a simpler equation and then generalizing this solution 

properly so as to satisfy the original equation by treating the arbitrary 

constants not as constants but as variables. 

 

3.9 EXERCISE 

Q. 1 Find the particular solution to 

 

Q. 2 Find a particular solution to the equation 

 

Q. 3 Find the general solution of the equation 
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Q. 4 Find the particular solution to 

 

 

3.10 ANSWER TO CHECK IN PROGRESS 
Check In Progress-1 

Answer Q. 1 Check in section 3 

 Q. 2 Check in section 4 

Check In progress-II 

Answer Q. 1 Check in section 5 

 Q. 2 Check in section 6.1 

3.11SUGGESTION READING AND 

REFERENCES 
[1] L.S. Pontryagin, "Ordinary differential equations" , Addison-

Wesley (1962) (Translated from Russian) 

[2] E. Kamke, "Differentialgleichungen: Lösungen und 

Lösungsmethoden" , 1. Gewöhnliche Differentialgleichungen , 

Chelsea, reprint (1947) 

[3] G. Sansone, "Ordinary differential equations" , 1–2 , Zanichelli 

(1948–1949) (In Italian) 

[4] P. Hartman, "Ordinary differential equations" , Birkhäuser (1982) 

[5] F. Tricomi, "Repertorium der Theorie der 

Differentialgleichungen" , Springer (1968) 

[6] V.V. Golubev, "Vorlesungen über Differentialgleichungen im 

Komplexen" , Deutsch. Verlag Wissenschaft. (1958) (Translated 

from Russian) 
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4.0 OBJECTIVE 
 

 In this unit we study about Bessel Differential Equation and its 

proof 

 We also study Bessel function of first kind and Bessel function of 

second kind 

 We study Bessel Function Neumann series 

 We study Legendre‘s Function of first kind and Legendre‘s 

Function of second kind 

 We study associated Legendre Polynomial 

 

4.1 INTRODUCTION 
 

In this entry the term is used for the cylinder functions of the first kind 

(which are usually called Bessel functions of the first kind by those 

authors which use the term Bessel functions for all cylinder functions). 

For the Bessel functions of the second kind, denoted by Yν (more rarely 

by Nν) and also called Neumann functions or Weber functions, 

see Cylinder functions and Neumann function. For the Bessel functions 

of the third kind see Cylinder functions and Hankel functions. 

A function  defined by the recurrence relations 

 

(1) 

and 

 

(2) 

The Bessel functions are more frequently defined as solutions to 

the differential equation 

 

(3) 
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There are two classes of solution, called the Bessel function of the first 

kind  and Bessel function of the second kind . (A Bessel 

function of the third kind, more commonly called a Hankel function, is a 

special combination of the first and second kinds.) Several related 

functions are also defined by slightly modifying the defining equations. 

4.2 BESSEL DIFFERENTIAL EQUATION 

The Bessel differential equation is the linear second-order ordinary 

differential equation given by 

 

(1) 

Equivalently, dividing through by , 

 

(2) 

The solutions to this equation define the Bessel functions  and 

. The equation has a regular singularity at 0 and an 

irregular singularity at . 

A transformed version of the Bessel differential equation given by 

Bowman (1958) is 

 

(3) 

The solution is 

 

(4) 

where 

 

(5) 

 and  are the Bessel functions of the first and second kinds, 

and  and  are constants. Another form is given by 

letting , , and  (Bowman 1958, p. 117), 

then 
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(6) 

The solution is 

 

(7) 

 

4.2.1 Bessel Function of the First Kind 

 

 

 

The Bessel functions of the first kind  are defined as the solutions to 

the Bessel differential equation 

 

(1) 

which are nonsingular at the origin. They are sometimes also called 

cylinder functions or cylindrical harmonics. The above plot 

shows  for , 1, 2, ..., 5. The notation  was first used by 

Hansen (1843) and subsequently by Schlömilch (1857) to denote what is 

now written  . However, Hansen's definition of the function itself 

in terms of the generating function 

 

(2) 
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is the same as the modern one (Watson 1966, p. 14). Bessel used the 

notation  to denote what is now called the Bessel function of the first 

kind (Cajori 1993, vol. 2, p. 279). 

The Bessel function  can also be defined by the contour integral 

 

(3) 

where the contour encloses the origin and is traversed in a 

counterclockwise direction  

The Bessel function of the first kind is implemented in the Wolfram 

Language as BesselJ[nu, z]. 

To solve the differential equation, apply Frobenius method using a series 

solution of the form 

 

(4) 

Plugging into (1) yields 

 

(5) 

 

(6) 

The indicial equation, obtained by setting , is 

 

(7) 

Since  is defined as the first nonzero term, , so . 

Now, if , 

 

(8) 
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(9) 

 

(10) 

 

(11) 

First, look at the special case , then (11) becomes 

 

(12) 

so 

 

(13) 

Now let , where , 2, .... 

  

 

(14) 

  

 

(15) 

  

 

(16) 

which, using the identity , gives 

 

(17) 

Similarly, letting , 

 

(18

) 

which, using the identity , gives 

 

(19) 

Plugging back into (◇) with  gives 

  

 

(20) 
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(21) 

  

 

(22) 

  

 

(23) 

  

 

(24) 

The Bessel functions of order  are therefore defined as 

 

 

 

(25) 

 

 

 

(26) 

so the general solution for  is 

 

(27) 

Now, consider a general . Equation (◇) requires 

 

(28) 

 

(29) 

for , 3, ..., so 

   

(30) 

  

 

(31) 

for , 3, .... Let , where , 2, ..., then 

  

 

(32) 

   

(33) 

where  is the function of  and  obtained by iterating the 

recursion relationship down to . Now let , where , 2, ..., so 

  

 

(34) 

  

 

(35) 
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(36) 

Plugging back into (◇), 

  

 

(37) 

  

 

(38) 

  

 

(39) 

  

 

(40) 

  

 

(41) 

Now define 

 

(42) 

where the factorials can be generalized to gamma functions for 

nonintegral . The above equation then becomes 

 

(43) 

Returning to equation (◇) and examining the case , 

 

(44) 

However, the sign of  is arbitrary, so the solutions must be the same 

for  and . We are therefore free to replace  with , so 

 

(45) 

and we obtain the same solutions as before, but with  replaced by . 
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(46) 

We can relate  and  (when  is an integer) by writing 

 

(47) 

Now let . Then 

  

 

(48) 

  

 

(49) 

But  for , so the denominator is infinite and the 

terms on the left are zero. We therefore have 

  

 

(50) 

   

(51) 

Note that the Bessel differential equation is second-order, so there must 

be two linearly independent solutions. We have found both only 

for . For a general nonintegral order, the independent solutions 

are  and . When  is an integer, the general (real) solution is of the 

form 

 

(52) 

where  is a Bessel function of the first kind,  (a.k.a. ) is 

the Bessel function of the second kind (a.k.a. Neumann function or 

Weber function), and  and  are constants. Complex solutions are 

given by the Hankel functions (a.k.a. Bessel functions of the third kind). 

The Bessel functions are orthogonal in  according to 
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(53) 

where  is the th zero of  and  is the Kronecker delta (Arfken 

1985, p. 592). 

Except when  is a negative integer, 

 

(54) 

where  is the gamma function and  is a Whittaker function. 

In terms of a confluent hypergeometric function of the first kind, the 

Bessel function is written 

 

(55) 

A derivative identity for expressing higher order Bessel functions in 

terms of  is 

 

(56) 

where  is a Chebyshev polynomial of the first kind. Asymptotic 

forms for the Bessel functions are 

 

(57) 

for  and 

 

(58) 

for   

A derivative identity is       
(59) 

An integral identity is 
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(60) 

Some sum identities are 

 

(61) 

(which follows from the generating function (◇) with ), 

 

(62) 

 

(63) 

 

(64) 

for   

 

(65) 

and the Jacobi-Anger expansion 

 

(66) 

which can also be written 

 

(67) 

The Bessel function addition theorem states 

 

(68) 

Various integrals can be expressed in terms of Bessel functions 

 

(69) 

which is Bessel's first integral, 
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(70) 

  

 

(71) 

for , 2, ..., 

 

(72) 

for , 2, ..., 

 

(73) 

for . The Bessel functions are normalized so that 

 

(74) 

for positive integral (and real) . Integrals involving  include 

 

(75) 

 

(76) 

Ratios of Bessel functions of the first kind have continued fraction 

 

(77) 
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The special case of  gives  as the series 

 

(78) 

or the integral 

 

(79) 

 

Check In Progress-I 

Q. 1 Define Bessel differential equation. 

Solution : . . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . .  . . . . . .  . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  . 

. . . . . . . . . . . . . . . . .  . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . 

. . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .  . .  . . . . . . . . . . 

.  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

Q. 2 Define Bessel First Order  Differential Equation. 

Solution : . . .  . . . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . . . . . . . . . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . 

. . . . .  . . . . . . . …………. . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . …………. . .  . .  . . . . .  . . . . .  . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . .. . .  . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

4.2.2 Bessel Function of the Second Kind 
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A Bessel function of the second kind   sometimes also 

denoted  is a solution to the Bessel differential equation which is 

singular at the origin. Bessel functions of the second kind are also called 

Neumann functions or Weber functions. The above plot 

shows  for , 1, 2, ..., 5. The Bessel function of the second kind 

is implemented in the Wolfram Language as BesselY[nu, z]. 

Let  be the first solution and  be the other one (since the Bessel 

differential equation is second-order, there are two linearly 

independent solutions). Then 

   

(1) 

   

(2) 

Take  (1) minus  (2), 

 

(3) 

 

(4) 

so , where  is a constant. Divide by , 

 

(5) 

 

(6) 

Rearranging and using  gives 
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(7) 

   

(8) 

where  is the so-called Bessel function of the second kind. 

 can be defined by 

 

(9) 

where  is a Bessel function of the first kind and, for  an 

integer  by the series 

 

(10) 

where  is the digamma function (Abramowitz and Stegun 1972, 

p. 360). 

The function has the integral representations 

  

 

(11) 

  

 

(12) 

Asymptotic series are 

  

 

(13) 

  

 

(14) 

where  is a gamma function. 
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For the special case ,  is given by the series 

 

(15) 

where  is the Euler-Mascheroni constant and  is a harmonic number. 

4.2.3 Bessel Function Neumann Series 

A series of the form 

 

(1) 

where  is a real and  is a Bessel function of the first kind. Special 

cases are 

 

(2) 

where  is the gamma function, and 

 

(3) 

where 
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(4) 

and  is the floor function. 

4.2.4 Bessel Polynomials 

Bessel polynomials  satisfy 

 

and are given by 

 

The ordinary Bessel polynomials are those found with , [a2]. 

The moments associated with the Bessel polynomials satisfy 

 

and are given by . 

The weight equation is 

 

where  is any function with  moments. This equation has been 

solved when 

 

where 

 

when  (no restriction),  and , [a3]. 

The weight for the ordinary Bessel polynomials was found by S.S. Kim, 

K.H. Kwon and S.S. Han, [a1], after over 40 years of search. 

Using the three-term recurrence relation 
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the norm square  is easily calculated and 

equals , [a2], 

where . Clearly,  generates a Krein 

space on . 

 

4.3 EULER-CAUCHY EQUATIONS 

An Euler-Cauchy equation is 

 

where b and c are constant numbers. Let us consider the change of 

variable 

 

x = e
t
. 

Then we have 

 

 

The equation (EC) reduces to the new equation 

                                   

We recognize a second order differential equation with constant 

coefficients. Therefore, we use the previous sections to solve it. We 

summarize below all the cases: 

(1)Write down the characteristic equation 

 

(2)If the roots r1 and r2 are distinct real numbers, then the general 

solution of (EC) is given by 

y(x) = c1 |x|
r
1 + c2 |x|

r
2. 

(3)If the roots r1 and r2 are equal (r1 = r2), then the general solution of 

(EC) is 
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(4)If the roots r1 and r2 are complex numbers, then the general solution 

of (EC) is 

 

 where  and . 

Example : Find the general solution to 

 

Solution: First we recognize that the equation is an Euler-Cauchy 

equation, with b=-1 and c=1. 

1Characteristic equation is r
2
 -2r + 1=0. 

2Since 1 is a double root, the general solution is 

 

 

4.4 CYLINDER FUNCTION 
 

 

 

The cylinder function is defined as 
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(1) 

The Bessel functions are sometimes also called cylinder functions. 

To find the Fourier transform of the cylinder function, let 

   

(2) 

 

  

(3) 

and 

   

(4) 

   

(5) 

Then 

  

 

(6) 

  

 

(7) 

  

 

(8) 

Let , so . Then 

  

 

(9) 

  

 

(10) 

  

 

(11) 

  

 

(12) 

  

 

(13) 

where  is a Bessel function of the first kind. 

As defined by Watson (1966), a "cylinder function" is any function 

which satisfies the recurrence relations 

 

(14) 

 

(15) 
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This class of functions can be expressed in terms of Bessel functions. 

4.4.1 Hemispherical Function 

 

The hemisphere function is defined as 

 

(1) 

Watson (1966) defines a hemispherical function as a function  which 

satisfies the recurrence relations 

 

(2) 

with 

                                                                                                                   

(3) 

4.5 LEGENDRE DIFFERENTIAL 

EQUATION 

The Legendre differential equation is the second-order ordinary 

differential equation 

 

(1) 

which can be rewritten 

 

(2) 

The above form is a special case of the so-called "associated Legendre 

differential equation" corresponding to the case . The Legendre 

differential equation has regular singular points at , 1, and . 
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If the variable  is replaced by , then the Legendre differential 

equation becomes 

 

(3) 

derived below for the associated ( ) case. 

Since the Legendre differential equation is a second-order ordinary 

differential equation, it has two linearly independent solutions. A 

solution  which is regular at finite points is called a Legendre 

function of the first kind, while a solution  which is singular at  is 

called a Legendre function of the second kind. If  is an integer, the 

function of the first kind reduces to a polynomial known as the Legendre 

polynomial. 

The Legendre differential equation can be solved using the Frobenius 

method by making a series expansion with , 

  

 

(4) 

  

 

(5) 

  

 

(6) 

Plugging in, 

 

(7) 

 

(8) 

 

(9) 

 

(10) 



Notes 

115 

 

(11) 

 

(12) 

 

(13) 

 

(14) 

so each term must vanish and 

 

(15) 

  

 

(16) 

  

 

(17) 

Therefore, 

  

 

(18) 

  

 

(19) 

  

 

(20) 

  

 

(21) 

  

 

(22) 

so the even solution is 

 

(23

) 

Similarly, the odd solution is 
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(24

) 

If  is an even integer, the series  reduces to a polynomial of 

degree  with only even powers of  and the series  diverges. If  is 

an odd integer, the series  reduces to a polynomial of degree  with 

only odd powers of  and the series  diverges. The general solution 

for an integer  is then given by the Legendre polynomials 

  

 

(25) 

  

 

(26) 

where  is chosen so as to yield the 

normalization  and  is a hypergeometric function. 

A generalization of the Legendre differential equation is known as 

the associated Legendre differential equation. 

Moon and Spencer  call the differential equation 

 

(27) 

the Legendre wave function equation 

 

 

 

 

 



Notes 

117 

4.5.1 Legendre Polynomial 

 

  

 

The Legendre polynomials, sometimes called Legendre functions of the 

first kind, Legendre coefficients, or zonal harmonics (Whittaker and 

Watson 1990, p. 302), are solutions to the Legendre differential equation. 

If  is an integer, they are polynomials. The Legendre 

polynomials  are illustrated above for  and , 2, ..., 5. 

They are implemented in the Wolfram Language as LegendreP[n, x]. 

The associated Legendre polynomials  and  are solutions to 

the associated Legendre differential equation, where  is a positive 

integer and , ..., . 

The Legendre polynomial  can be defined by the contour integral 

 

(1) 

where the contour encloses the origin and is traversed in a 

counterclockwise direction  

The first few Legendre polynomials are 

   

(2) 

   

(3) 

  

 

(4) 
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(5) 

  

 

(6) 

  

 

(7) 

  

 

(8) 

When ordered from smallest to largest powers and with the denominators 

factored out, the triangle of nonzero coefficients is 1, 1, , 3, , 5, 

3, , ... (OEIS A008316). The leading denominators are 1, 1, 2, 2, 8, 8, 

16, 16, 128, 128, 256, 256, ... (OEIS A060818). 

The first few powers in terms of Legendre polynomials are 

   

(9) 

 

 

 

(10) 

 

 

 

(11) 

 

 

 

(12) 

 

 

 

(13) 

 

 

 

(14) 

A closed form for these is given by 

 

(15) 

For Legendre polynomials and powers up to exponent 12,  

The Legendre polynomials can also be generated using Gram-Schmidt 

orthonormalization in the open interval  with the weighting 

function 1. 

   

(16) 
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(17) 

   

(18) 

  

 

(19) 

  

 

(20) 

  

 

(21) 

  

 

(22) 

Normalizing so that  gives the expected Legendre polynomials. 

The "shifted" Legendre polynomials are a set of functions analogous to 

the Legendre polynomials, but defined on the interval (0, 1). They obey 

the orthogonality relationship 

 

(23) 

The first few are 

 

  

(24) 

 

  

(25) 

 

 

 

(26) 

 

 

 

(27) 

The Legendre polynomials are orthogonal over  with weighting 

function 1 and satisfy 

 

(28) 

where  is the Kronecker delta. 
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The Legendre polynomials are a special case of the Gegenbauer 

polynomials with , a special case of the Jacobi 

polynomials  with , and can be written as a hypergeometric 

function using Murphy's formula 

 

(29) 

The Rodrigues representation provides the formula 

 

(30) 

which yields upon expansion 

  

 

(31) 

  

 

(32) 

where  is the floor function. Additional sum formulas include 

  

 

(33) 

  

 

(34) 

In terms of hypergeometric functions, these can be written 

  

 

(35) 

  

 

(36) 

   

(37) 

A generating function for  is given by 
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(38) 

Take , 

 

(39) 

Multiply (39) by , 

 

(40) 

and add (38) and (40), 

 

(41) 

This expansion is useful in some physical problems, including expanding 

the Heyney-Greenstein phase function and computing the charge 

distribution on a sphere. Another generating function is given by 

 

(42) 

where  is a zeroth order Bessel function of the first kind. 

The Legendre polynomials satisfy the recurrence relation 

 

(43) 

In addition, 

 

(44) 

A complex generating function is 

 

(45) 
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and the Schläfli integral is 

 

(46) 

Integrals over the interval  include the general formula 

 

(47) 

for  from which the special case 

 

 

 

(48) 

  

 

(49) 

Follows. For the integral over a product of Legendre functions, 

 

(50) 

for  which gives the special case 

 

(51) 

where 

 

(52) 

The latter is a special case of 
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(53) 

where 

 

(54) 

and  is a gamma function 

Integrals over  with weighting functions  and  are given by 

 

 

 

(55) 

 

 

 

(56) 

The Laplace transform is given by 

 

(57) 

where  is a modified Bessel function of the first kind. 

A sum identity is given by 

 

(58) 
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where  is the th root of  (Szegö 1975, p. 348). A similar identity 

is 

 

(59) 

which is responsible for the fact that the sum of weights in Legendre-

Gauss quadrature is always equal to 2. 

Check In Progress-II 

Q. 1 Define Legendre‘s  differential equation. 

Solution : . . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . .  . . . . . .  . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  . 

. . . . . . . . . . . . . . . . .  . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . 

. . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .  . .  . . . . . . . . . . 

.  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

Q. 2 Define Legendre‘s Polynomial . 

Solution : . . .  . . . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . . . . . . . . . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . 

. . . . .  . . . . . . . …………. . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . …………. . .  . .  . . . . .  . . . . .  . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . .. . .  . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

 

 4.5.2 Legendre Function of the First Kind 

The (associated) Legendre function of the first kind  is the solution 

to the Legendre differential equation which is regular at the origin. 

For  integers and  real, the Legendre function of the first kind 

simplifies to a polynomial, called the Legendre polynomial. The 

associated Legendre function of first kind is given by the Wolfram 

Language command LegendreP[n, m, z], and the unassociated function 

by LegendreP[n, z]. 
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4.5.3  Legendre Function of the Second Kind 

 

The second solution  to the Legendre differential equation. The 

Legendre functions of the second kind satisfy the same recurrence 

relation as the Legendre polynomials. The Legendre functions of the 

second kind are implemented in the Wolfram 

Language as LegendreQ[l, x]. The first few are 

  

 

(1) 

  

 

(2) 

  

 

(3) 

  

 

(4) 

The associated Legendre functions of the second kind  are the 

second solution to the associated Legendre differential equation, and are 

implemented in the Wolfram 

Language as LegendreQ[l, m, x]  has derivative about 0 of 

 

(5) 
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The logarithmic derivative is 

 

(6) 

4.5.4 Associated Legendre Polynomial 

The associated Legendre polynomials  and  generalize 

the Legendre polynomials  and are solutions to the associated 

Legendre differential equation, where  is a positive integer and , 

..., . They are implemented in the Wolfram 

Language as LegendreP[l, m, x]. For positive , they can be given in 

terms of the unassociated polynomials by 

 

 

 

(1) 

  

 

(2) 

where  are the unassociated Legendre polynomials. The associated 

Legendre polynomials for negative  are then defined by 

 

(3) 

There are two sign conventions for associated Legendre polynomials. 

Some authors (e.g., Arfken 1985, pp. 668-669) omit the Condon-Shortley 

phase , while others include it (e.g., Abramowitz and Stegun 1972, 

Press et al. 1992, and the LegendreP[l, m, z] command in the Wolfram 

Language). Care is therefore needed in comparing polynomials obtained 

from different sources. One possible way to distinguish the two 

conventions is due to Abramowitz and Stegun (1972, p. 332), who use 

the notation 

 

(4) 



Notes 

127 

to distinguish the two. 

Associated polynomials are sometimes called Ferrers' functions (Sansone 

1991, p. 246). If , they reduce to the unassociated polynomials. The 

associated Legendre functions are part of the spherical harmonics, which 

are the solution of Laplace's equation in spherical coordinates. They 

are orthogonal over  with the weighting function 1 

 

(5) 

and orthogonal over  with respect to  with the weighting 

function , 

 

(6) 

The associated Legendre polynomials also obey the following recurrence 

relations 

 

(7) 

Letting  (commonly denoted  in this context),  

 

(8) 

 

(9) 

Additional identities are 

 

(10) 

 

(11) 

Including the factor of , the first few associated Legendre 

polynomials are 
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(12) 

 

  

(13) 

 

 

 

(14) 

 

 

 

(15) 

 

 

 

(16) 

 

 

 

(17) 

 

 

 

(18) 

 

 

 

(19) 

 

 

 

(20) 

 

 

 

(21) 

 

 

 

(22) 

 

 

 

(23) 

 

 

 

(24) 

 

 

 

(25) 

 

 

 

(26) 

 

 

 

(27) 

Written in terms  (commonly written ), the first few 

become 

 

  

(28) 

 

  

(29) 

 

  

(30) 

 

 

 

(31) 

 

  

(32) 
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(33) 

 

 

 

(34) 

 

 

 

(35) 

 

 

 

(36) 

 

 

 

(37) 

The derivative about the origin is 

 

(38) 

and the logarithmic derivative is 

 

(39) 

 

4.6 SUMMARY 

 We study The Bessel differential equation is the linear second-

order ordinary differential equation given by 

 

  

 We learn The Legendre differential equation is the second-order 

ordinary differential equation 

 

 

 We study Bessel Neumann series of the form 

 

 

 We study the Bessel polynomials  satisfy 
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 We study the The associated Legendre 

polynomials  and  generalize the Legendre 

polynomials  and are solutions to the associated Legendre 

differential equation.  

4.7 KEYWORD 
 

Neumann Series : A Neumann series is a mathematical series of the 

form. where T is an operator. Here, T
k
 is a mathematical notation for k 

consecutive operations of the operator T. This generalizes the 

geometric series 

Bessel Series : Bessel's differential equation that are finite at the origin (x 

= 0) for integer or positive α and diverge as x approaches zero for 

negative non-integer α. 

Lengdre‘s Polynomial : The Legendre polynomials, sometimes 

called Legendre functions of the first kind, Legendre coefficients, or 

zonal harmonics, are solutions to the Legendre differential equation. If is 

an integer, they are polynomials 

4.8 EXERCISE 
 

Q. 1 Define Legendre‘s Polynomial . 

Q. 2 Define Bessel First Order  Differential Equation. 

Q. 3 Find the general solution to 

 

Q. 4 Define Legendre‘s  differential equation of First Kind. 

Q. 5 Define Legendre‘s  differential equation of Second Kind. 

 

4.9 ANSWER TO CHECK IN PROGRESS 
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Check In Progress-1 

Answer Q. 1 Check in section 3 

 Q. 2 Check in section 3.1 

Check In progress-II 

Answer Q. 1 Check in section 6 

 Q. 2 Check in section 6.1 
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  UNIT 5 TOPIC : EXISTENCE AND 

UNIQUENESS OF INITIAL VALUE 

PROBLEMS 
 

STRUCTURE 

5.0 Objective  

5.1 Introduction 

5.2 Existence And Uniqueness Of Solution 

5.3 Picard Iterative Process 

5.4  Picard's Existence Theorem 

 5.4.1 Peano Derivative 

5.5 Second Degree Taylor Polynomials 

5.6 Numerical Technique: Euler's Method 

5.7 Exact And Nonexact Equations 

5.8 Integrating Factor Technique 

5.9 Summary 

5.10 Keyword 

5.11  Exercise 

5.12 Answer To Check In Progress 

5.13 Suggestion Reading And References 

 

5.0 OBJECTIVE 

 We study in this unit existence and uniqueness of solutions 

 We study Picard iterative process 

 We study taylor polynomials and its examples 
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 We study picard's existence theorem and its proof 

 We study second degree taylor polynomials with its examples 

 We study exact and non-exact equations 

5.1 INTRODUCTION 

Fractional calculus is a generalization of ordinary differentiation and 

integration to arbitrary noninteger order, so fractional differential 

equations have wider application. Fractional differential equations have 

gained considerable importance; it can describe many phenomena in 

various fields of science and engineering such as control, porous media, 

electrochemistry, viscoelasticity, and electromagnetic. 

In the recent years, there has been a significant development in 

fractional calculus and fractional differential equations; see Kilbas et al. 

, Miller and Ross , Podlubny , Baleanu et al. , and so forth. Research on 

the solutions of fractional differential equations is very extensive, such 

as numerical solutions, see El-Mesiry et al. and Hashim et al. , mild 

solutions, see Chang et al. and Chen et al. , the existence and uniqueness 

of solutions for initial and boundary value problem, and so on. 

With the deep study, many papers that studied the fractional equations 

contained more than one fractional differential operator. 

5.2 EXISTENCE AND UNIQUENESS OF 

SOLUTIONS 

Existence and uniqueness theorem is the tool which makes it possible 

for us to conclude that there exists only one solution to a first order 

differential equation which satisfies a given initial condition. How does 

it work? Why is it the case? We believe it but it would be interesting to 

see the main ideas behind. First let us state the theorem itself. 

Theorem. Let f(x,y) be a real valued function which is continuous on the 

rectangle  . 

Assume f has a partial derivative with respect to y and that  is also 
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continuous on the rectangle R. Then there exists an 

interval  (with  ) such that the initial 

value problem 

 

has a unique solution y(x) defined on the interval I. 

Note that the number h may be smaller than a. In order to understand the 

main ideas behind this theorem, assume the conclusion is true. Then 

if y(x) is a solution to the initial value problem, we must have 

 

It is not hard to see in fact that if a function y(x) satisfies the equation 

(called functional equation) 

 

on an interval I, then it is solution to the initial value problem 

 

Picard was among the first to look at the associated functional equation. 

The method he developed to find y is known as the method of successive 

approximations or Picard's iteration method. This is how it goes: 

Step 1. Consider the constant function 

 

Step 2. Once the function  is known, define the function 
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Step 3. By induction, we generate a sequence of 

functions  which, under the assumptions made 

on f(x,y), converges to the solution y(x) of the initial value 

problem 

 

Example: Suppose the differential equation  satisfies the 

Existence and Uniqueness Theorem for all values of y and t. 

Suppose  and  are two solutions to this 

differential equation. 

1.What can you say about the behavior of the solution of the 

solution y(t) satisfying the initial condition y(0)=1? 

Hint: Draw the two solutions  and  . 

2.Address the behavior of y(t) as t approaches  , and 

as t approaches  . 

Solution: 1. First let us draw the graphs of  and  . 

 

Since we have  , we deduce from 

the Existence and Uniqueness Theorem that for all t, we have 

 

In particular, y(t) has the line y=t as an oblique asymptote which answers 

the second question. 
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We cannot predict that y(t) is an increasing function. 

 

5.3 PICARD ITERATIVE PROCESS 

Indeed, often it is very hard to solve differential equations, but we do 

have a numerical process that can approximate the solution. This process 

is known as the Picard iterative process. 

First, consider the IVP 

 

It is not hard to see that the solution to this problem is also given as a 

solution to (called the integral associated equation) 

 

The Picard iterative process consists of constructing a sequence  of 

functions which will get closer and closer to the desired solution. This is 

how the process works: 

(1)  for every x; 

(2)then the recurrent formula holds 

      

for  . 

Example: Find the approximated sequence , for the IVP 

. 

Solution: First let us write the associated integral equation 
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Set  . Then for any  , we have the recurrent formula 

 

We have  , and 

 

We leave it to the reader to show that 

 

We recognize the Taylor polynomials of (which also get closer and 

closer to) the function 

 

Taylor Polynomials 

Introduction 

The fundamental idea in differential calculus is that a function can be 

``locally'' approximated by its tangent line. 

For instance consider the function  near  . Since its 

derivative at  equals  , the tangent line 

at  can be written as 
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In the picture below, the sine function is black, while its tangent line is 

depicted in red. Close to  , both are quite close! 

 

Example : Find an equation for the tangent line of the 

function  at the point  . 

Answer : The derivative of f(t) is  , thus  . 

Since  , we obtain as an equation for the tangent line 

at  : 

 

No reason to only compute second degree Taylor polynomials! If we 

want to find for example the fourth degree Taylor polynomial for a 

function f(x) with a given center  , we will insist that the polynomial 

and f(x) have the same value and the same first four derivatives at  . 

A calculation similar to the previous one will yield the formula: 

 

Some more notation. 
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(1) Usually Taylor polynomials are denoted by  , 

where n indicates its degree. 

(2) The factorial sign comes in handy: Recall 

that  . For 

instance  Mathematicians usually say 

that 0!=1. 

(3) Recall that one writes  for the nth derivative of the 

functionf.  just means f(x). 

With these notations, we can then write the nth term of a Taylor 

polynomial as 

 

Thus we obtain the general formula for the nth Taylor polynomial of a 

function f(x) with center  : 

 

An alternative way of writing this--for the not easily Mathematese-

intimidated-- is provided by the summation notation: 

 

High time to try it yourself! 

Example : Find the 5th degree Taylor polynomial for the 

function  with center  . 

Answer :  
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As you can see in the following animated picture for the example of this 

sine function, increasing the degree of the Taylor polynomial for a given 

function f(x) at a given point  generally has two effects: 

 At a given point x, the approximation of f(x) by the value of the 

Taylor polynomial  becomes more accurate. 

 The approximation becomes ``good'' over a larger interval 

around the center  . (This is really saying the same as the 

previous statement!) 

The function sin(3x) is black, while its Taylor polynomials with 

center  are shown in red. 

 

Example : Find the Taylor polynomial for the following functions 

and centers: 

1. , center  , degree 5. 

2. , center  , degree 3. 

3. , center  , degree 3. 

Answer : If you did the last problem, you realize that you only have to 

compute the first 2 derivatives, since the function under consideration is 

even, and thus its Taylor polynomial has only even powers. 
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resulting in f(0)=1, f'(0)=0 and f''(0)=-2. Consequently the Taylor 

polynomial looks like this: 

 

Check In Progress-I 

Q. 1 Define Picard Iterative Process. 

Solution : . . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . 

. . . . .  . . . . . .  . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . . . . . . . . . 

.  . . . . . . . . . . . . . . . . . .  . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . 

. . . . . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .  . .  . . . . . . . 

. . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

Q. 2 Find the approximated sequence , for the IVP 

. 

Solution : . . .  . . . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . . . . . . . . . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . 

. . . . . .  . . . . . . . …………. . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . …………. . .  . .  . . . . .  . . . . .  . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . .. . .  . .  . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

5.4 PICARD'S EXISTENCE THEOREM 

If  is a continuous function that satisfies the Lipschitz condition 

 

(1) 
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in a surrounding of , 

then the differential equation 

 

  

(2) 

   

(3) 

has a unique solution  in the interval , where , 

min denotes the minimum, , and sup denotes 

the supremum. 

5.4.1 Peano Derivative 

One of the generalizations of the concept of a derivative. Let there exist 

a  such that for all  with  one has 

 

where  are constants and  as ; let . 

Then  is called the generalized Peano derivative of order  of the 

function  at the point . Symbol: ; in 

particular, , . If  exists, 

then , , also exists. If the finite ordinary two-sided 

derivative  exists, then . The converse is 

false for : For the function 

 

one has ,  but  does not exist 

for  (since  is discontinuous for ). Consequently, the 

ordinary derivative  does not exist for . 

Infinite generalized Peano derivatives have also been introduced. Let for 

all  with , 
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where  are constants and  as  (  is a 

number or the symbol ). Then  is also called the Peano derivative 

of order  of the function  at the point . It was introduced by G. 

Peano. 

Theorem 1.1 (Cauchy-Peano Existence Theorem)   

Let  b continuous in a neighborhood of the 

point . Then there exists a  such that the IVP 

 

(1) 

has a solution  on the interval . That is, there 

exists a  defined on  such that 

 

and . 

Remark: In general,  is not unique. If  is Lipschitz continuous with 

respect to , then uniqueness follows from the Picard theorem / Picard 

iterates. 

Remark 2: We give two proofs to show the differences in the two 

approaches. The first one is the approximation procedure, and the 

second is the topological / fixed point method. 

Proof 1: Since  is continuous in a neighborhood of , there 

exists  such that  is continuous in the closed square 

 

Let  (which exists as  is a continuous function 

on a compact set). Set  (we have assumed, WLOG that 

). 

We know, from previous courses, that  is a solution of the IVP 

(1) if and only if  satisfies the integral equation 
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(2) 

(Consequence of FTC) 

Since  is uniformly continuous on  (a compact set), given , 

there exists a  such 

that  and  implies  for 

all . Therefore, let  and . 

We choose 

points  with  and  (where 

), with . 

We define the polygonal 

approximation  on  by  and 

. Then, , and we 

continue this iterative definition to get 

that  for . 

Note that  is piecewise  (continuous and has, perhaps, a jump 

discontinuity in the derivative at the partition points). We then define 

 

Then notice that 

 

We claim that . Note, 
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Therefore, 

 

Further note 

 

 

 

Thus, from our  condition, . 

By the Ascoli-Arzela Theorem, there exists a uniformly convergent 

subsequence of  which converges 

to  for . That is, 

 

 

which is exactly what we needed to show a solution to the DE . 

Proof 1, Variant 2: 

Recall, from the first proof, 

 

where  is a neighborhood of , throughout which  is 

continuous. 

 

 

We define the sequence  as follows: 
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(where ). This is well defined - on the interval 

, , so  is defined 

So again, we have a sequence  defined on . By the 

Ascoli-Arzela theorem, there exists a uniformly convergent subsequence 

- say it converges to . 

 

 

It follows that  is also a solution to the DE. 

Remarks on Uniqueness 

Note again that the system (1) is equivalent to the integral equation (2). 

If we have a Lipschitz condition, then we can use the Picard iterates 

method on the integral equation to get a unique solution. We define 

 

 

As we commented above, this converges to a unique solution 

of 1 if  is Lipschitz in . 

5.5SECOND DEGREE TAYLOR 

POLYNOMIALS 

One way to see that the tangent line to a function f(x) at a given 

point  is the best line approximating the function is to observe that the 
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tangent line is the (only) line passing through the point  and 

having the same slope as f(x) at  . 

So what about about finding the "best'' parabola approximating the 

function f(x) near  ? We should look for the parabola passing 

through  , which has the same slope (the first derivative) 

as f(x) at  , and which has the same second derivative as f(x) at  ! 

Let's try it: Consider  near  . The parabola we 

are trying to find has the generic form: 

 

Writing the parabola this way, it is easier to compute its derivatives 

at  : p'(x)=b +2 c (x-1) and p''(x)=2 c. Substituting  we 

obtain: 

 

Recall, we want to find the parabola which has the same derivatives 

at  as f(x). This yields the conditions: 

 

Now  ;  and 

 . Solving for the coefficients and substituting in the 

formula for p(x), we obtain 

 

The polynomial p(x) is called the second degree Taylor polynomial of 
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the function  at the point  . 

The picture below shows f(x) in black and its second degree Taylor 

polynomial at  in red. 

 

It is not hard to see what the general formula will look like: If we 

replace  by a "general''  above, we obtain: 

 

as the general form of the Taylor polynomial at  ; We need that 

 

and consequently 

 

 is called the center of the Taylor polynomial. Note: The center  is 

fixed, the variable name for the polynomial is x. Even if we consider the 

same function f(x), different centers will usually yield different Taylor 

polynomials (just as a function usually has different tangent lines at 
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various points!). 

 

Try it yourself! 

Example : Find the quadratic Taylor polynomial for the 

function  with the center  . 

Answer : The relevant information is listed in the following table 

 

Using the formula above we obtain as the second degree Taylor 

polynomial: 

 

5.6 NUMERICAL TECHNIQUE: EULER'S 

METHOD 

The same idea used for slope fields--the graphical approach to finding 

solutions to first order differential equations--can also be used to obtain 

numerical approximations to a solution. The basic idea of differential 

calculus is that, close to a point, a function and its tangent line do not 

differ very much. Consider, for example, the function , 

and its tangent line at  . 

Now consider the differential equation 

 

If we want to compute the solution passing through the point (-1,4), then 
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we can compute the tangent line at this point. Its slope at x=-1 is given 

by the differential equation 

 

thus, the equation for the tangent line is given by 

 

Since we expect the solution to the differential equation and its tangent 

line to be close when x is close to -1, we should also expect that the 

solution to the differential equation at, let's say, x=-0.75 will be close to 

the tangent line at x=-0.75. 

We compute the y-value of the tangent line to be y(-0.75)=2.75. This 

method can now be iterated; the tangent line equation for x=-.075 

and y=2.75 is given by 

 

using the tangent line equation for x=-0.5, we obtain as an 

approximation to our solution 

 

What is the formula we use to find our approximations? 

We start at the point  . Let h denote the x-increment. 

Then  .  is the the y-coordinate of the point on the line 

passing through the point  with 

slope  thus  

The next approximation is found by replacing  and  by  and  ; 

so  and  . In general, we 

obtain the following formula for  , 
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We obtain better approximations if we reduce the step size h. The 

following graphs give approximations for step sizes h=0.25 in 

blue, h=0.1 in purple and h=0.01 in red: 

 

For this example it is not hard to compute the exact solution 

 

The next graph shows the exact solution in black. We see that a step size 

of h=0.01, leading to 500 steps of computation, does a satisfactory job in 

approximating the exact solution. 

 

 

The rest of this page is devoted to some of the pitfalls of numerical 

computations. Here is another example of a "harmless" differential 

equation: 

 

First, we try Euler's method with a step size of h=0.1. Recall that this 
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step size gave a satisfactory approximation in the previous example. 

 

Not much is happening. Note, however, that the scale on the y-axis is of 

the magnitude  . 

Let's try again with a step size of h=0.0025, leading to 6,000 computing 

steps. 

 

It is easy to solve the differential equation analytically (do it!). The next 

picture compares the previous approximation (in red) to the graph of the 

exact solution (in black). The approximation is off by about 50%! 

 

It is of interest to use numerical methods only when one is unable to 

compute solutions with pencil and paper. But, in such a situation you 

cannot compare the approximation to the exact solution so you have no 

control over how good your approximation is! If you take a course in 

Numerical Mathematics you will learn that there are ways to predict the 

error in Euler's method even if you cannot compute the exact solution. 
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The class is also the place to learn more sophisticated numerical 

methods to solve differential equations. For the differential equation we 

considered, one should use a method which automatically reduces the 

step size where the slope of the solution changes rapidly! 

The last example addresses another pitfall. Let's consider the differential 

equation 

 

We want to find the solution satisfying the initial condition y(0)=1.1, 

using Euler's method with step size h=.1. 

The following is a table with the first four values; the function is 

decreasing rapidly: 

 

Let's look at the graph of the approximation. 

 

The next picture compares the approximation (in blue) to the graph of 

the exact solution (in red). 
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Notice that there is no hint of a resemblance between the two. What has 

happened? An explanation requires the knowledge of the concept of a 

node. The differential equation has an equilibrium solution y=1. The 

equilibrium is a down node; thus the exact solution with initial 

condition y(0)=1.1 is decreasing and approaches 1 as t approaches 

infinity. The Euler approximation "jumps" below the equilibrium 

solution in the first computational step (look again at the table above). 

Once it is below the equilibrium solution it moves away from the 

position of the node rather rapidly! In our case, a smaller step size would 

prevent the Euler approximation from ever jumping below the 

equilibrium solution. 

Example: Consider the autonomous differential equation with the initial 

condition 

. 

1.Find 

. 

Hint: You may want to sketch the Slope Fields of this differential 

equation 

2.Find the first five terms of the Euler Approximation 

when  . 

3.Is there a contradiction between the results of 1 and 2 ? If yes, 

explain what happened. 
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Solution : 1. Since  , any solution to the differential equation is 

increasing. This differential equation has one critical solution y=0. Since 

the initial condition satisfied by the solution to the IVP is y(0) = -0.1 < 

0, then we have y(t) <0 for all t. We deduce from this that 

 

2.Recall the formula which gives the euler's approximations to the 

solution 

 

This gives the first five terms as: 

 

3.According to the result in Part 1, the solution to the given IVP should 

always be negative and according to the above Euler's approximation the 

first term  is positive. This is our contradiction. As a matter of fact, 

according to the slope field, the Euler's approximation should continue 

to rise and even tend to , which even further contradicts the 

conclusion of 1. 

4 The reason behind this is that  is a large step. So, after the first 

shot, it shoots above the critical solution y=0. Try to do the same 

problem with different step-sizes. 

Check In Progress-II 

Q. 1 State Picard Existence Theorem. 

Solution : . . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . 

. . . . .  . . . . . .   . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . .  . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . 

. . . . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .  . .  . . . . . . . . 
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. . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

Q. 2 Define Euler‘s  Method. 

Solution : . . .  . . . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . . . . . . . . . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . 

. . . . . .  . . . . . . . …………. . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . …………. . .  . .  . . . . .  . . . . .  . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . .. . .  . .  . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

5.7 EXACT AND NONEXACT 

EQUATIONS 

All the techniques we have reviewed so far were not of a general nature 

since in each case the equations themselves were of a special form. So, 

we may ask, what to do for the general equation 

 

Let us first rewrite the equation into 

 

This equation will be called exact if 

, 

and nonexact otherwise. The condition of exactness insures the 

existence of a function F(x,y) such that 

 

When the equation (E) is exact, we solve it using the following steps: 

(1)Check that the equation is indeed exact; 
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(2)Write down the system 

 

(3)Integrate either the first equation with respect of the variable x or the 

second with respect of the variable y. The choice of the equation to be 

integrated will depend on how easy the calculations are. Let us assume 

that the first equation was chosen, then we get 

 

The function  should be there, since in our integration, we assumed 

that the variable y is constant. 

(4)Use the second equation of the system to find the derivative of  . 

Indeed, we have 

, 

which implies 

 

Note that  is a function of y only. Therefore, in the expression 

giving  the variable, x, should disappear. Otherwise something went 

wrong! 

(5)Integrate to find ; 

(6)Write down the function F(x,y); 

(7)All the solutions are given by the implicit equation 
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(8)If you are given an IVP, plug in the initial condition to find the 

constant C. 

You may ask, what do we do if the equation is not exact? In this case, 

one can try to find an integrating factor which makes the given 

differential equation exact. 

 

5.8  INTEGRATING FACTOR 

TECHNIQUE 

Assume that the equation 

, 

is not exact, that is- 

 

In this case we look for a function u(x,y) which makes the new equation 

, 

an exact one. The function u(x,y) (if it exists) is called the integrating 

factor. Note that u(x,y) satisfies the following equation: 

 

This is not an ordinary differential equation since it involves more than 

one variable. This is what's called a partial differential equation. These 

types of equations are very difficult to solve, which explains why the 

determination of the integrating factor is extremely difficult except for 

the following two special cases: 

Case 1: There exists an integrating factor u(x) function of x only. This 
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happens if the expression 

, 

is a function of x only, that is, the variable y disappears from the 

expression. In this case, the function u is given by 

 

Case 2: There exists an integrating factor u(y) function of y only. This 

happens if the expression 

, 

is a function of y only, that is, the variable x disappears from the 

expression. In this case, the function u is given by 

 

Once the integrating factor is found, multiply the old equation by u to 

get a new one which is exact. Then you are left to use the previous 

technique to solve the new equation. 

Advice: if you are not pressured by time, check that the new equation is 

in fact exact! 

 

Let us summarize the above technique. Consider the equation 

 

If your equation is not given in this form you should rewrite it first. 

Step 1: Check for exactness, that is, compute 
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, 

then compare them. 

Step 2: Assume that the equation is not exact (if it is exact go to step ?). 

Then evaluate 

 

If this expression is a function of x only, then go to step 3. Otherwise, 

evaluate 

 

If this expression is a function of y only, then go to step 3. Otherwise, 

you can not solve the equation using the technique developped above! 

Step 3: Find the integrating factor. We have two cases: 

3.1 If the expression  is a function of x only. Then an 

integrating factor is given by 

; 

3.2 If the expression  is a function of y only, then an 

integrating factor is given by 

 

Step 4: Multiply the old equation by u, and, if you can, check 
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that you have a new equation which is exact. 

 

Step 5: Solve the new equation using the steps described in the 

previous section. 

The following example illustrates the use of the integrating factor 

technique: 

Integrating Factor Technique:  

Example : Find all the solutions to 

 

Solution: Note that this equation is in fact homogeneous. But let us use 

the technique of exact and nonexact to solve it. Let us follow these 

steps: 

(1)We rewrite the equation to get 

 

Hence,  and  . 

(2)We have 

, 

which clearly implies that the equation is not exact. 

(3)Let us find an integrating factor. We have 

. 

Therefore, an integrating factor u(x) exists and is given by 
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(4)The new equation is 

, 

which is exact. (Check it!) 

(5)Let us find F(x,y). Consider the system: 

 

(6)Let us integrate the first equation. We get 

 

(7)Differentiate with respect to y and use the second equation of the 

system to get 

, 

which implies  , that is,  is constant. Therefore, the 

function F(x,y) is given by 

 

We don't have to keep the constant C due to the nature of the solutions 

(see next step). 

(8)All the solutions are given by the implicit equation 

 

Remark: Note that if you consider the function 
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, 

then we get another integrating factor for the same equation. That is, the 

new equation 

 

is exact. So, from this example, we see that we may not have uniqueness 

of the integrating factor. Also, you may learn that if the integrating 

factor is given to you, the only thing you have to do is multiply your 

equation and check that the new one is exact. 

5.9 SUMMARY 
 

 We study f(x,y) be a real valued function which is continuous on 

the 

rectangle  . 

Assume f has a partial derivative with respect to y and that  is 

also continuous on the rectangle R. Then there exists an 

interval  (with  ) such that the 

initial value problem 

 

has a unique solution y(x) defined on the interval I. 

 We also study (Cauchy-Peano Existence Theorem)   

Let  b continuous in a neighborhood of the 

point . 

 We study tangent line to a function f(x) at a given point  is the 

best line approximating the function is to observe that the 
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tangent line is the (only) line passing through the 

point  and having the same slope as f(x) at   

 

5.10 KEYWORD 
 

Picard Iterative : Picard iteration for a differential equation is the process 

, which converges to a unique solution given that the function is 

continuous 

Taylor Polynomial : A Taylor series is a representation of a function as 

an infinite sum of terms that are calculated from the values of 

the function's derivatives at a single point. ... The polynomial formed by 

taking some initial terms of the Taylor series is called a Taylor 

polynomial 

Integrating Factor : An integrating factor is any function that is used as a 

multiplier for another function in order to allow that function to be 

solved; that is, using an integrating factor allows a non-exact function to 

be exact. 

5.11 EXERCISE 

Q. 1 Find the 5th degree Taylor polynomial for the 

function  with center  . 

Q. 2 FIND ALL THE SOLUTIONS TO

 

Q. 3 Find the quadratic Taylor polynomial for the 

function  with the center  . 

Q. 4 Consider the autonomous differential equation with the initial 

condition 
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. 

Find . 

Q. 5 Suppose the differential equation  satisfies the 

Existence and Uniqueness Theorem for all values of y and t. 

Suppose  and  are two solutions to this 

differential equation. 

 

5.12 ANSWER TO CHECK IN PROGRESS 
 

Check In Progress-1 

Answer Q. 1 Check in section 4 

 Q. 2 Check in section 4 

Check In progress-II 

Answer Q. 1 Check in section 5 

 Q. 2 Check in section 7 
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UNIT 6 GRONWALL'S INEQUALITY 

AND CONTINUATION OF 

SOLUTIONS 
 

STRUCTURE 

6.0 Objective  

6.1 Introduction 

6.2 Gronwall‘s Inequality 

6.3 Differential Inequality 

6.4 Integral Invariant 

6.5 Continuation Method  ( Parametrized Family) 

6.5.1 Continuation Method (Parametrized      

         family, for Non-Linear Operators) 

6.6 Ascoli-Arzela Theory 

 6.6.1 BVPs for Non-Bounded 

6.7 Summary 

6.8 Keyword 

6.9 Exercise 

6.10 Answer to check in Progress 

6.11 Suggestion Reading and References 

 

6.0 OBJECTIVES 
 

 In This unit we study Gronwall‘s inequality and its proof with 

examples.  

 We study Differential Inequality with its proof 

 We also study theorem on Uniqueness of Solutions to IVPs 

 We study integral invarint and its details  
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 We study continuation method  ( parametrized family) and also 

study continuation method (parametrized family, for non-linear 

operators) 

 We study solvind of boundary value problems 

 

6.1 INTRODUCTION 

In mathematics, Grönwall's inequality (also called Grönwall's lemma or 

the Grönwall–Bellman inequality) allows one to bound a function that is 

known to satisfy a certain differential or integral inequality by the 

solution of the corresponding differential or integral equation. There are 

two forms of the lemma, a differential form and an integral form. For the 

latter there are several variants. 

Grönwall's inequality is an important tool to obtain various estimates in 

the theory of ordinary and stochastic differential equations. In particular, 

it provides a comparison theorem that can be used to prove uniqueness of 

a solution to the initial value problem; see the Picard–Lindelöf theorem. 

It is named for Thomas Hakon Grönwall (1877–1932). Grönwall is the 

Swedish spelling of his name, but he spelled his name as Gronwall in his 

scientific publications after emigrating to the United States. 

The differential form was proven by Grönwall in 1919. The integral form 

was proven by Richard Bellman in 1943. 

Suppose f  is continuous. If x is a solution on an interval [a,a), a > a, we 

say x is a continuation of x if there is a b > a such that ~ is defined on [a-

r,b), coincides with x on [a-r,a), and ~ satisfies on [a, b). A solution x is 

noncontinuable if no such continuation exists~ that is, the interval [a,a) is 

the maximal interval of existence of the solution x. The existence of a 

noncontinuable solution follows from Zorn's lemma. Also, the maximal 

interval of existence must be open. 

6.2 GRONWALL’S INEQUALITY 

Let  be the divisor function. Then 
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where  is the Euler-Mascheroni constant. Ramanujan independently 

discovered a less precise version of this theorem  

Theorem : Gronwall's Inequality 

Let  be nonnegative continuous functions  such that 

 

then 

 

In particular, if , then . 

Proof. Let  Therefore, 

 

This reduces to the differential inequality 

 

Multiplying the LHS by 

 

we get 

 

And integrate from 0 to  to get 

 

 

Finally, 

 

This allows us to state a new uniqueness theorem: 

Theorem  :  Uniqueness of Solutions to IVPs 

Assume that  is continuous on 
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and satisfies 

 

Then the solution to the IVP (1) exists on , 

where , and the solution is unique. 

Proof. Existence follows from 

If there exists two solutions  and  to (1), then define 

 

Then, , and 

 

 

So, we get the following for : 

 

Therefore, 

 

 

 

Thus, from Gronwell's Inequality  with , , 

and , we get . Thus, , and the uniqueness is 

shown.  
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6.3 DIFFERENTIAL INEQUALITY 

An inequality which interconnects the argument, the unknown function 

and its derivatives, e.g. 

 

(1) 

where  is an unknown function of the argument . The principal 

problem in the theory of differential inequalities is to describe, starting 

from a known differential inequality and additional (initial or boundary) 

conditions, all its solutions. 

Differential inequalities obtained from differential equations by replacing 

the equality sign by the inequality sign — which is equivalent to adding 

some non-specified function of definite sign to one of the sides of the 

equation — form a large class. A comparison of the solutions of such 

inequalities with the solutions of the corresponding differential equations 

is of interest. Thus, the following estimates [1] are valid for any solution 

of (1): 

 

(2) 

 

where 

 

on any interval  of existence of both solutions. This simple 

statement is extensively employed in estimating the solutions of 

differential equations (by passing to the respective differential inequality 

with a particular solution which is readily found), the domain of 

extendability of solutions, the difference between two solutions, in 

deriving conditions for the uniqueness of a solution, etc. A similar 

theorem [2] is also valid for a differential inequality (Chaplygin's 

inequality) of the type 

 

Here, estimates of the type (2) for solutions satisfying identical initial 

conditions at  are only certainly true on some interval determined 

by the coefficients . E.g., this is the 

interval  for . 
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For a system of differential inequalities 

 

it has been shown [3] that if each function  is non-decreasing with 

respect to the arguments  (for all ), the estimate 

 

resembling (2), is valid. The development of these considerations leads 

to the theory of differential inequalities in spaces with a cone. 

A variant of differential inequalities is the requirement that the total 

derivative of a given function is of constant sign: 

 

This requirement is used in stability theory. 

A representative of another class is the differential inequality 

 

(3) 

(  is given), which was first studied in the context of the general 

idea of an approximate description of a real problem by differential 

equations. Here the description of the integral funnel, i.e. the set of all 

points of all solutions which satisfy the given initial conditions, in 

particular, the behaviour of the funnel as , is of interest. A 

natural generalization of the differential inequality (3) is a differential 

equation in contingencies, specified by a field of cones, which 

generalizes the concept of a field of directions. 

The theory of boundary value problems was also studied for differential 

inequalities. The inequality , where  is the Laplace operator, 

defines subharmonic functions; the differential 

inequality  defines subparabolic functions. Studies 

were also made of differential inequalities of a more general type (in 

both the above classes) with partial derivatives for differential operators 

of various types. 

 

6.4 INTEGRAL INVARIANT 
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Integral Invariant of degree (order) , of a smooth dynamical system 

An absolute integral invariant is an exterior differential form  of 

degree  that is transformed into itself by the transformations generated 

by this system. 

A relative integral invariant is an exterior differential form  of 

degree  whose exterior differential is an absolute integral invariant (of 

degree ). 

One usually speaks of integral invariants of a flow (continuous-time 

dynamical system)  defined by a system of ordinary linear 

differential equations , where  is a smooth vector field given 

on some domain in a Euclidean space (or on a manifold). In coordinates 

(local coordinates in the case of a manifold) this system has the form 

 

(1) 

An important example of an integral invariant is a volume 

form  (where  is a positive locally 

integrable (often even continuous or smooth) function in the 

coordinates). For smooth  this form is an absolute invariant of (1) if 

 

In this case the flow has an invariant measure , which is 

given in (local) coordinates by its density  (the latter is often called 

an integral invariant, allowing for some ambiguity of speech). 

A Hamiltonian system with (generalized) momenta and 

coordinates , , has the relative integral invariant 

 

and the absolute integral invariant 

 

This fact may be put at the basis of the definition of a Hamiltonian 

system and may be used to develop the theory of Hamiltonian systems, 

since many specific properties of such systems are directly related to 

these integral invariant. The exterior powers  (including the volume 



Notes 

175 

form ) are absolute, while the products  are relative integral 

invariants of any Hamiltonian system. Therefore, they are called 

universal integral invariants of Hamiltonian systems. Up to a multiplier, 

all universal integral invariants of Hamiltonian systems can be reduced to 

the ones indicated. 

If (1) has an absolute integral invariant  of degree , then for any -

dimensional smooth chain  (e.g., for a smooth -dimensional 

manifold), 

 

(2) 

If (1) has a relative integral invariant, then (2) holds, generally speaking, 

only when the chain is the boundary of a chain of dimension . 

Sometimes relative integral invariants are defined by the stronger 

condition that (2) holds for all cycles . Initially, integral invariants were 

defined by H. Poincaré as integrals of the type above that remain 

invariant under the action of the flow on the domain of integration. 

All that has been said can easily be generalized to non-autonomous 

systems . The modification given by E. Cartan  appears to be 

most essential. It involves the transition (even in the autonomous case) to 

an extended phase space (one adds time to the ordinary phase 

coordinates), in which the integral curves (cf. Integral curve) of the 

system of differential equations considered form a certain family of lines 

(a congruence, cf. Congruence of lines). Cartan requires that the integral 

of a form  over a chain  (or over a cycle, if one discusses a relative 

integral invariant) remains invariant if each point  moves along 

the integral curve passing through this point; different points may move 

in different ways as long as this gives a smooth deformation of . (E.g., 

in the new sense it is not  that is a relative integral invariant of 

Hamiltonian systems, but the extremely useful Cartan–Poincaré integral 

invariant , where  is the Hamiltonian. 
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6.5 CONTINUATION METHOD  ( 

PARAMETRIZED FAMILY) 

 

The inclusion of a given problem in a one-

parameter  family of problems, connecting the given 

problem  with a problem that is known to be 

solvable , and the study of the dependence of solutions on the 

parameter . The method is extensively used in the theory of differential 

equations. 

Suppose, e.g., that one has to prove the solvability in a Hölder class of 

the Dirichlet problem 

 

(1) 

in a suitable bounded -dimensional region  for the linear elliptic 

second-order operator 

 

 

 

One introduces the family of elliptic operators 

 

and considers for it the Dirichlet problem 

 

(2) 

Let  be the set of all  for which (2) is uniquely solvable 

in  for any  and . 

The set  is not empty, since for  (i.e. for the Laplace operator) 

(2) is uniquely solvable in , which follows from potential 

theory. The set  is at the same time open and closed in , hence 

coincides with it. Thus,  belongs to  and (1) is solvable. 
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The continuation method (in the case of analytic continuation) was 

proposed and developed in a number of papers by S.N. Bernstein [S.N. 

Bernshtein], . Subsequently, this method gained wide application in 

various problems in the theory of linear and non-linear differential 

equations, where the idea of analytic continuation was supplemented by 

more general functional and topological principles. 

 

 

Check In Progress-I 

Q. 1 State Gronwall‘s Inequality. 

Solution : . . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . .  . . . . . .  . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  . 

. . . . . . . . . . . . . . . . .  . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . 

. . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .  . .  . . . . . . . . . . 

.  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

Q. 2 Define differential Inequality.  

Solution : . . .  . . . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . . . . . . . . . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . 

. . . . .  . . . . . . . …………. . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . …………. . .  . .  . . . . .  . . . . .  . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . .. . .  . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

 

6.5.1 Continuation Method (Parametrized family, 

for Non-Linear Operators) 

A method for approximately solving non-linear operator equations. It 

consists of generalizing the equation to be solved, , to the 

form , by introducing a parameter  that takes values in a 

finite interval, , such that the initial equation is obtained 
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for : , while the equation  can 

either easily be solved, or a solution  of it is already known.  

The generalized equation  is solved sequentially for 

individual values of : . For  it is solved by means 

of some iteration method (Newton, simple iteration, variation of 

parameter, etc.), starting with the solution  obtained by 

solving  for . Applying at each step in , 

e.g.,  Newton iterations, leads to the formulas 

 

 

If the difference  is sufficiently small, then the value of  may 

turn out to be a sufficiently good initial approximation, ensuring 

convergence, in order to obtain the solution  for  (cf.   

In practice, the initial problem often naturally depends on some 

parameter, which can then be taken as . 

The continuation method is used in the solution of systems of non-linear 

algebraic and transcendental equations, as well as for more general non-

linear functional equations in Banach space.  

The continuation method is sometimes called the direct method of 

variation of parameter as well as the combined method of direct and 

iterative variation of parameter. In these methods the construction of 

solutions of generalized equations is reduced, by differentiation with 

respect to the parameter, to the solution of a differential problem with 

initial conditions (a Cauchy problem) by methods of numerical 

integration of ordinary differential equations. Applying the simplest 

Euler method in the direct method of variation of parameter to the 

Cauchy problem 

 

the approximate values , , of the 

solution  of  can be determined from the following 

identities: 
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The element  is the required approximate solution of the initial 

equation . A refinement of all or some values  can be 

obtained by the iteration method of variation of parameter (or Newton's 

method). The generalized equation is here usually generated in the form 

 

on a finite interval , or, replacing in it  by , on the 

infinite interval . 

The method of variation of parameter has been applied to large classes of 

problems both for constructing solutions, as well as for proving their 

existence 

6.6 ASCOLI-ARZELA THEORY 
 

We aim to state the Ascoli-Arzela Theorem in a bit more generality than 

in previous classes. 

Definition 7.1   Complete Metric Space 

Let  be a metric space. Then  is said to be complete if every 

Cauchy sequence in  converges to a point in . 

In other words, if , and  as , then 

there exists  with . 

Definition 7.2   -Ball 

For  and , we define the -ball about  to be 

 

Definition 7.3   -Nets 

Let  is such that 

 

then the set  is called an -net in  (for ). In other words, every 

point in  is within  of some point in . 
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Definition 7.4   Totally Bounded We say that the metrix space  is 

totally bounded (or precompact) if for any , there is a finite -net 

for . 

Recall that if  is a compact metric space, then  is totally bounded. 

That is, we have for any  

 

so  is an open cover, so there is a finite subcover 

 

So that 

 

Equivalently,  is a -net for . 

 

Theorem 7.1   If  is a complete and totally bounded metric space, 

then  is compact. 

Proof. If no, then there exists an open cover  of  which does not 

have a finite subcover. We use this to define a sequence in  as 

follows: 

Let  be a finite -net for . It follows that, for some 

,  cannot be covered by a finite subcover of . We 

let . In a similar manner, we pick  for a finite -net 

of . We know that the sequence  is a Cauchy 

sequence, and much converge to some . However, there is 

a  which contains . So, by picking a sufficiently large 

enough , we can get that the ball , a contradiction. 
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Proposition 7.1   If  is totally bounded, where  is is a 

complete metric space, then  is also totally bounded. 

Proof. Let  be given. Claim that  has a finite -net; (i.e., there 

exists  such that . 

To see this, let  be a finite -net for . Then, for 

,  for some . If , then there exists a 

sequence  with . Therefore, we find a  such 

that  and an  such that . Thus, by the 

triangle inequality, we get that . Thus,  is an -net 

for .  

Definition 7.5   , : 

If  is a metrix space, then 

    bounded  

    is continuous on   

For , 

 

Convergence in this norm is uniform convergence. We use the same 

norm for . 

Both  and  are complete metric spaces. 

Definition 7.6   Bounded: 

If , then  is said to be bounded if there exists 

a  such that for all , . 
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Definition 7.7   Relatively Compact: 

If , where  is a compact metric space, then we say  is 

relatively compact if it is contained in some compact subset of . 

Definition 7.8   Equicontinuous: 

If , then we say that  is equicontinuous at  if for 

each , there exists a  such that for 

some  where  implies  for 

all . 

 is said to be equicontinuous on  if it is equicontinuous at 

all . 

Theorem 7.2   Ascoli-Arzela Theorem: 

Let  be a compact metric space and let  be equicontinuous 

and bounded. Then,  is relatively compact. 

Proof. Let  be given. Then, for each ,  such 

that  implies  for all . 

Therefore,  (open cover). As  is compact, there is 

a finite subset  such that . (From 

here on, denote ). We need to show that  is totally bounded - 

i.e., we need to find a finite -net for . For each , , the 

set 

 

is a bounded set in . Therefore,  has a finite -net (in ). That 

is,  so that  is a -net in , i.e. for 

any ,  for some . 
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We claim that  is an -net for . For any  and , 

then  is within  of some . So,  by 

equicontinuity. Now  is within  of some  by the -net 

property of the . Therefore, . Then, 

for  and  as above, 

 

 

Theorem 7.3   Let  be a compact metric space. Then every bounded 

equicontinuous family has a uniformly convergent subsequence. 

Definition 7.9   Compact Mapping: 

Let  be complete metric spaces and  be continuous. 

Then  is said to be a compact mapping if  is relatively 

compact in . 

Definition 7.10   Complete Continuity: 

We say  is completely continuous if for any bounded 

set ,  is relatively compact. 

Recall that a normed linear space is a vector space  wih a 

mapping  such that 

 , and equality holds iff . 

  

  

Theorem 7.4   Compositions of Completely Continuous Funcions: 

Let , , and  be normed linear spaces and suppose  is 
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completely continuous and  is continuous. 

Then,  is completely continuous. 

Proof. Let  be bounded and consider a sequence ; 

thus, . We claim some subsequence 

of  converges to  (note that  need not be in . 

Note that there is a subsequence  such that . 

Further,  is continuous, so . 

Thus,  is completely continuous. 

Notation: If  then  denotes the space of all real-valued 

continuous functions  such that  is continuous 

on  for . 

 is a normed linear space with norm 

 

where . 

Clearly,  and the embedding  is 

completely coninuous. 

 

Theorem 7.5    is completely continuous, where 

 

Proof.  is a completely continuous embedding. 

If  and  is bounded, then we claim that  is relatively 

compact in . That is, if  and , 
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then . Give  and let . Then, by the MVT, for 

any 

,  and  Therefore,  is 

a bounded equicontinuous family and so contains a convergent 

subsequence by the Arzela Ascoli theorem.  

 

6.6.1 Solving BVPs 

We are next interested in applying these theorems in the BVP 

 

 

where  is continuous. This includes, for example, 

the forced pendulum equation in the form 

 

 

where  is -periodic and odd. In this case, we take 

 

where we have done the change of variable 

 

Write 

    (linear differential operator)  

Then, . We introduce the Nemitski 

Operator,  given by 
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Let  be the inclusion operator from  to . To solve the boundary 

value problem, we need to invert  and apply it to . 

First, we need to restrict  to the subspace 

 

then we will have the solution to the BVP written as a solution to the 

operator equation, 

 

Define . 

Recall the Green's function for the problem 

 

given by 

 

Recall, 

Lemma 7.1   For ,  is given by 

 

and satisfies 

 

Proof. Verify this directly (we've seen it before).  

We also have, 

Lemma 7.2   For , 

 

Proof. Recall for , the norm 
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Notice that 

 

and it is easy to see that 

 

So letting , 

 

Now, 

 

 

 

 

Finally, through similar estimates, we get , so 

 

 

Hence, as  has this uniform bound, we get that it is continuous 

(from a simple proof in functional analysis).  

Monday, 2-14-2005 
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Lemma 7.3   If  is continuous, then the Nemitski 

operator  is continuous in , where 

 

Proof. Let , and let  be given. We need to show there 

exists  such that if  and , 

then . Chose  such that . Now, on 

the compact set 

 

 is bounded and uniformly continuous. So, there exists a  such 

that if , then 

 

Let . If  and , then 

 

Hence, 

    and  

So,  and . 

Hence,  for 

all  and . Thus,  is 

continuous. 

 

We now have: 

Theorem 7.1.1   The operator 
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given by, 

 

is completely continuous. 

Proof. Immediate.  given by  is 

completely continuous. Then  is also, as it is the composition of a 

continuous and completely continuous map.  

We now easily prove: 

Theorem 7.1.2   If  is bounded, then the BVP 

 

 

has a solution. 

Proof. Let 

 

 

where 

 

Then we note that  is closed, bounded, and convex. We 

claim . Let ; then we want to show that . 

We note that 

 

i.e., 

 

Let . Then, 

 

Thus, 
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and  is a completely continuous operator in  into , and so has a 

fixed point  with . Then, 

 

 

and the BVP has a solution.  

We get this as an immediate Corollary: 

Theorem 7.1.3   Suppose  is an odd -periodic function . 

Then the BVP 

 

 

has a solution. By extending  to an odd function and extending, we can 

find a periodic solution of the BVP for all of . 

 

Check In Progress-II 

Q. 1 Define Continuation Method . 

Solution : . . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . .  . . . . . .  . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  . 

. . . . . . . . . . . . . . . . .  . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . 

. . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .  . .  . . . . . . . . . . 

.  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

Q. 2 For ,  is given by 

 

and satisfies 
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Solution : . . .  . . . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . . . . . . . . . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . 

. . . . .  . . . . . . . …………. . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . …………. . .  . .  . . . . .  . . . . .  . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . .. . .  . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

6.6.2 BVPs for Non-Bounded  

Remarks: (on steady-state temperature). Suppose we have a rod of finite 

length whose ends are kept at a fixed temperature. Under certain 

simplifying asumptions, the temperature at any point  satisfies 

a certain second order differential equation of the form 

 

where  is the thermal conductivity depending on . In any 

case, this can be written as 

 

 

where  has the form 

 

The basic assumptions on  are that  is continuous 

and there exists an  such that if 

1.  implies , for all  

2. There exists  such that if , , then 
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i.e.,  grows no faster than quadratically with respect to  for 

,  bounded. 

Note: Topics like this lead into generalized Bernstein Theory, where we 

are interested in the BVP 

 

 

where  is continuous which satisfies the above 

conditions. Again, we will consider the map 

 

defined by  as before. Note that  no longer 

has a bounded image; however, we will still be able to show that  is 

completely continuous and apply the Leray-Schauder alternative. 

To apply the Leray-Schauder Alternative, we need to show that there 

exists a  such that if ,  then  for 

all . We will show that if  for 

some  where , then 

 

 

 

Consider the equation . Then, . 

Then, 

 

and 

 

We write this as 
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where . Therefore, we can show that if such a problem has a 

solution, then  (for some ). 

 

We state and prove: 

Theorem 7.2.1   Let  be continuous and satisfy the 

growth conditions stated previously. Then there exists a  such that 

if  is a solution of 

 

 

for , then . 

Remark: Notice that if  is a solution of 

 

and , then , , 

and . However, by one of the conditions that we are 

assuming on , . 

Proof. Recall 

that 

. Define: 

 

where  solves the BVP 
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We claim that . TO see this, note that . 

Since , there exists an  where . 

Thus,  and  by the second derivative test. 

Then,  and . Therefore 

at ,  implies  and 

 

It follows that  (see the above remark) and that . 

So, for , we can apply the second condition - the growth condition 

on . We will use this to find an a priori bound on . 

We claim that for all , we have  where 

 

There are four cases to consider, as we know that there 

exists  with : 

1.  on ,  

2.  on ,  

3.  on ,  

4.  on ,  

We can divide the interval  into a finite number of such 

subintervals. Assume that 1 holds (the other cases are similar) so 
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    on  

 

Because , 

 

for all , , and all . 

Note: 

 

 

as . Then, 

 

Multiply by  on  and get 

 

Integrating from  to , 

 

Defining , 

 

 

As  vanishes at ,  and , 
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This holds for any  in the interval. 

So, we have an upper bound on  for all . Thus, on the 

compact set , 

 

Therefore 

 

and 

 

By the Leray-Schauder Alternative,  has a fixed 

point  (as  for all  if .  

Example: Consider the following example: 

 

where 

 

where  are continuous on , , and . We 

suppose  such 

that  implies  (this is a condition on 

, , ) so condition 1 holds. Then, it follows that 
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will hold for some  if ,  and all  (by 

continuity). 

 

6.7 SUMMARY 
 

 We study in this unit Gronwall's Inequality 

Let  be nonnegative continuous functions  such that 

 

           then 

 

           In particular, if , then . 

 We study the theorems in the BVP 

 

 

              where  is continuous 

 We study a rod of finite length whose ends are kept at a fixed 

temperature. Under certain simplifying asumptions, the 

temperature at any point  satisfies a certain second 

order differential equation of the form 

 

 

6.8 KEYWORD 
 

Inequality : the relation between two expressions that are not equal, 

employing a sign such as ≠ ‗not equal to‘, > ‗greater than‘, or < ‗less than 
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Parametrized family : a parametric family or a parameterized family is 

a family of objects (a set of related objects) whose differences depend 

only on the chosen values for a set of parameters. Common examples 

are parametrized (families of) functions, probability distributions, curves, 

shapes, etc 

Integral Invariant : An absolute integral invariant is an exterior 

differential form of degree that is transformed into itself by the 

transformations generated by this system 

 

6.9 EXERCISE 
 

Q. 1 Let  be continuous and satisfy the growth 

conditions stated previously. Then there exists a  such that 

if  is a solution of 

 

 

for , then . 

Q. 2 If  is bounded, then the BVP 

 

 

has a solution. 

Q. 3 If  is a complete and totally bounded metric space, then  is 

compact. 

Q. 4 State and Prove Gronwall‘s Inequality. 

Q. 5 Define Continuation Differential Equation. 

Q. 6 The operator  

given by,            
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is completely continuous. 

 

6.10 ANSWER TO CHECK IN PROGRESS 
 

Check In Progress-1 

Answer Q. 1 Check in section 3 

 Q. 2 Check in section 4 

Check In progress-II 

Answer Q. 1 Check in Section 6.2 

 Q. 2 Check in Section Lemma 7.1 
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UNIT 7 MAXIMAL INTERVAL OF 

EXISTENCE AND CONTINUOUS 

DEPENDENCE 
 

STRUCTURE 

7.0 Objective  

7.1 Introduction 

7.2 Continuous Analogues of Iteration Methods 

7.3 Adjustment Method 

7.3.1 Intervals Of Validity 

7.4 Differential Equation, Partial, Discontinuous  

7.5 Homogeneous Equations 

7.6 Separable Equations 

7.7 Hermite's Equation 

7.8 Summary 

7.9 Keyword 

7.10 Exercise 

7.11 Answer to Check in Progress 

7.12 Suggestion Reading and References 

 

7.0 OBJECTIVES 
 

 We study in this unit Maximal interval of Existence. 

 We also study Continuous analogues of iteration method 

 We study adjustment method with examples 

 We study differential equation, partial, discontinuous initial 

(boundary) conditions 

 

7.1 INTRODUCTION 
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Definition. (Maximal interval of existence ) The interval (α, β) in 

Theorem 1 is called the maximal interval of existence of the solution x(t) 

of the initial value problem (1) or simply the maximal interval of 

existence of the initial value problem (1). x(t) = L ) , then L ∈ ˙ E. In this 

section we give some sufficient conditions under which every local 

solution of an IVP is global. One of them is the growth of f wrt y. If the 

growth is at most linear, then we have a global solution.  

            In situations where a physical process is described (modelled) by 

an initial value problem for a system of ODEs, then it is desirable that 

any errors made in the measurement of either initial data or the vector 

field, do not influence the solution very much. In mathematical terms, 

this is known as continuous dependence of solution of an IVP, on the 

data present in the problem. In fact, the following result asserts that 

solution to an IVP has not only continuous dependence on initial data but 

also on the vector field f. 

 

7.2 CONTINUOUS ANALOGUES OF 

ITERATION METHODS 

 

Continuous models that make it possible to study problems concerning 

the existence of solutions of non-linear equations, to produce by means 

of the well-developed apparatus of continuous analysis preliminary 

results on the convergence and optimality of iteration methods, and to 

obtain new classes of such methods. 

One can set up a correspondence between methods for solving stationary 

problems by adjustment (see Adjustment method) and certain iteration 

methods. For example, for the solution of a linear equation 

 

(1) 

with a positive-definite self-adjoint operator  it is known that one-step 

iteration methods of the form 

 

(2) 



Notes 

203 

converge for sufficiently small . Introduce a continuous 

time  and regard the quantities  as the values of a certain 

function  at , where 

 

If one puts , where  is a 

continuous function for , then in passing to the limit in (2) 

as , one obtains a continuous analogue of the 

iteration method (2): 

 

(3) 

If also 

 

as , then  tends to , a solution of (1). 

Similarly, with the one-step gradient iteration methods for the 

minimization of a function : 

 

(4) 

one can associate a continuous analogue: 

 

(5) 

Here the function  affects only the parametrization of the curve of 

steepest descent. To solve (1) one may take 

. Then the formulas (4) take the form (2) and the equations (5) the form 

(3). 

By means of transformations two-step iteration methods 

 

(6) 

can be brought to the form 

 

(7) 
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where the quantities , and  are (non-uniquely) defined in 

terms of the parameters  and  of (6). Taking limits in (7) 

as  leads to a continuous analogue: 

 

(8) 

The adjustment method involving an equation like (8) is called the 

method of the heavy sphere . There exist iteration methods for which the 

continuous analogues contain differential operators of higher orders . 

A source for obtaining differential equations playing the role of 

continuous analogues of iteration methods can be the continuation 

method (with respect to a parameter). In this method, to find a solution of 

an equation 

 

(9) 

one constructs an equation 

 

(10) 

depending on a parameter , such that for  a solution of (10) is 

known: , and such that for  the solutions of (9) and 

(10) are the same. For example, one can take 

 

(11) 

By differentiating (1) with respect to the parameter and 

taking  one obtains a differential equation for ; for the 

case (11) it takes the form 

 

(12) 

By splitting the interval  into  parts by 

points  and using for (12) a numerical 

discretization formula at the points  (e.g., Euler's method, the Runge–

Kutta method, etc.), one obtains recurrence relations between the 

quantities , which one uses to construct the formulas of an 

iteration method. Thus, after e.g. applying Euler's method, (12) is 

replaced by the relations 
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(13) 

where , which determine the following two-step 

iteration method containing internal and external iteration cycles: 

 

(14) 

 

For  and  this turns into Newton's classical method. A 

continuous analogue of Newton's iteration method can also be obtained 

in another way: In (11) the variable is replaced by . Then 

the differential equation (12) takes the form 

 

(15) 

Numerical integration of (15) by Euler's method with respect to the 

points  leads to the iteration method 

 

which coincides for  with Newton's classical method. 

Continuous analogues of iteration methods for the solution of boundary 

value problems for the differential equations of mathematical physics 

are, as a rule, mixed problems for partial differential equations of a 

special form (e.g. with rapidly oscillating coefficients or with small 

coefficients in front of the highest derivatives). 

 

7.3 ADJUSTMENT METHOD 

 

A method in which the solution  of a stationary problem 

 

(1) 

is regarded as the steady-state limit solution for  of a Cauchy 

initial value problem for a non-stationary evolution equation involving 

the same operator  (cf. Cauchy problem). This evolution equation may 

e.g. be of the form 
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(2) 

 

Here the  are suitable operators which guarantee the existence of the 

"adjustment limit" . 

A result of using adjustment is that it permits one to use approximate 

solution methods of (2) in order to construct iteration algorithms for 

solving equation (1) (cf. Iteration algorithm). Thus, for the non-stationary 

equation (2) one could employ a discretization (differencing) with 

respect to  solution method which is convergent and stable to obtain 

approximate solutions. For example, for , an explicit method of 

the form 

 

where . And then this method can be interpreted as 

an iteration algorithm 

 

for solving equation (1), in which  and  are now seen as 

characterizing this (iteration) method. 

Varying the form of the operators  and considering different 

discretizations with respect to  in equation (2) (explicit schemes, 

implicit schemes, splitting schemes, etc.) gives the possibility of 

obtaining a wide variety of iteration methods for solving equation (1). 

For these methods equation (2) will be the closure of the computational 

algorithm (cf. Closure of a computational algorithm). A generalization of 

the adjustment method is the continuation method (to a parametrized 

family) 

7.3.1 Intervals Of Validity 

We‘ve called this section Intervals of Validity because all of the 

examples will involve them. However, there is a lot more to this section. 

We will see a couple of theorems that will tell us when we can solve a 
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differential equation. We will also see some of the differences between 

linear and nonlinear differential equations. 

First let's take a look at a theorem about linear first order differential 

equations. This is a very important theorem although we‘re not going to 

really use it for its most important aspect. 

Theorem 1  Consider the following IVP. 

y′+p(t)y=g(t)y(t0)=y0 

If p(t) and g(t) are continuous functions on an open interval α<t<β and 

the interval contains to, then there is a unique solution to the IVP on that 

interval. 

So, just what does this theorem tell us? First, it tells us that for nice 

enough linear first order differential equations solutions are guaranteed to 

exist and more importantly the solution will be unique. We may not be 

able to find the solution but do know that it exists and that there will only 

be one of them. This is the very important aspect of this theorem. 

Knowing that a differential equation has a unique solution is sometimes 

more important than actually having the solution itself! 

Next, if the interval in the theorem is the largest possible interval on 

which p(t) and g(t) are continuous then the interval is the interval of 

validity for the solution. This means, that for linear first order differential 

equations, we won't need to actually solve the differential equation in 

order to find the interval of validity. Notice as well that the interval of 

validity will depend only partially on the initial condition. The interval 

must contain to, but the value of yo, has no effect on the interval of 

validity. 

Let‘s take a look at an example. 

Example 1 Without solving, determine the interval of validity for the 

following initial value problem.(  −9) y′ + 2y =   ln|20−4t|                  

y(4) = −3 



Notes 

208 

Solution: First, in order to use the theorem to find the interval of validity 

we must write the differential equation in the proper form given in the 

theorem. So we will need to divide out by the coefficient of the 

derivative. 

y′ + 2/   −9 y =  
         

    
  y′+2t 

Next, we need to identify where the two functions are not continuous. 

This will allow us to find all possible intervals of validity for the 

differential equation. So, p(t) will be discontinuous at t=±3 since these 

points will give a division by zero. Likewise, g(t) will also be 

discontinuous at t=±3 as well as t=5t since at this point we will have the 

natural logarithm of zero. Note that in this case we won't have to worry 

about natural log of negative numbers because of the absolute values. 

Now, with these points in hand we can break up the real number line into 

four intervals where both p(t)p(t) and g(t)g(t) will be continuous. These 

four intervals are, 

−∞<t<−3            −3<t<3            3<t<5                  5<t<∞ 

The endpoints of each of the intervals are points where at least one of the 

two functions is discontinuous. This will guarantee that both functions 

are continuous everywhere in each interval. 

Finally, let's identify the actual interval of validity for the initial value 

problem. The actual interval of validity is the interval that will 

contain to=4 . So, the interval of validity for the initial value problem is. 

3<t<5 

 

7.4 DIFFERENTIAL EQUATION, 

PARTIAL, DISCONTINUOUS INITIAL 

(BOUNDARY) CONDITIONS 
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A problem involving partial differential equations in which the functions 

specifying the initial (boundary) conditions are not continuous. 

For instance, consider the second-order hyperbolic equation 

 

and pose for it the mixed problem with initial conditions 

 

and boundary conditions 

 

In this case the discontinuities of the initial functions  and  entail 

discontinuities of  and  along the characteristic 

rays  and , and the measure of 

discontinuity 

 

or 

 

where  is a discontinuity point of the function  or , 

satisfies the equation 

 

along the characteristic ray, i.e. . Similar results are valid for 

second-order hyperbolic equations with variable coefficients: 

 

 

In this case the discontinuities of the initial functions and the boundary 

conditions also entail discontinuities in  and  along 

characteristic rays, which can be determined from the systems of 

equations 
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The measure of discontinuity  satisfies the equation: 

 

where the function  defines the characteristic surface in the form of 

the equation . 

In the case of equations of elliptic type the discontinuities of the 

boundary conditions do not propagate inside  because in this case the 

characteristic rays are complex. For equations of elliptic type studies 

were made of the existence and uniqueness of the solution, and of the 

solution satisfying the boundary conditions. Thus, it has been proved for 

second-order elliptic equations in an arbitrary domain, 

 

 

that if the boundary function  for the first boundary 

condition and  for the second boundary condition, then 

there exists a generalized solution in  which satisfies the 

boundary condition on the average, i.e. , where 

the surfaces  approximate the surface . In the case of parabolic 

(and also elliptic) equations, the discontinuities do not propagate 

inside  if discontinuities are present in the initial or in the boundary 

conditions. Problems of the existence and uniqueness of a generalized 

solution to the boundary condition have also been studied for these 

problems. 

 

Check In Progress-I 

Q. 1 Write second order hyperbolic differential equation. 

Solution : . . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . .  . . . . . .  . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  . 

. . . . . . . . . . . . . . . . .  . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . 
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. . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .  . .  . . . . . . . . . . 

.  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

Q. 2 Define Adjusment Method.  

Solution : . . .  . . . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . . . . . . . . . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . 

. . . . .  . . . . . . . …………. . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . …………. . .  . .  . . . . .  . . . . .  . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . .. . .  . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

 

7.5 HOMOGENEOUS EQUATIONS 

The differential equation 

 

is homogeneous if the function f(x,y) is homogeneous, that is- 

 

Check that the functions 

. 

are homogeneous. 

In order to solve this type of equation we make use of a substitution (as 

we did in case of Bernoulli equations). Indeed, consider the 

substitution  . If f(x,y) is homogeneous, then we have 

 

Since y' = xz' + z, the equation (H) becomes 
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which is a separable equation. Once solved, go back to the old 

variable y via the equation y = x z. 

Let us summarize the steps to follow: 

(1)Recognize that your equation is an homogeneous equation; that is, 

you need to check that f(tx,ty)= f(x,y), meaning that f(tx,ty) is independent 

of the variable t; 

(2)Write out the substitution z=y/x; 

(3)Through easy differentiation, find the new equation satisfied by the 

new function z. 

You may want to remember the form of the new equation: 

 

(4)Solve the new equation (which is always separable) to find z; 

(5)Go back to the old function y through the substitution y = x z; 

(6)If you have an IVP, use the initial condition to find the particular 

solution. 

Since you have to solve a separable equation, you must be particularly 

careful about the constant solutions. 

Example: Find all the solutions of 

 

Solution: Follow these steps: 

(1)It is easy to check that  is homogeneous; 

(2)Consider  ; 

(3)We have 
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, 

which can be rewritten as 

 

This is a separable equation. If you don't get a separable equation 

at this point, then your equation is not homogeneous, or 

something went wrong along the way. 

(4)All solutions are given implicitly by 

 

(5)Back to the function y, we get 

 

Note that the implicit equation can be rewritten as 

 

7.6 SEPARABLE EQUATIONS 

The differential equation of the form  is 

called separable, if f(x,y) = h(x) g(y); that is, 

 

In order to solve it, perform the following steps: 

(1)Solve the equation g(y) = 0, which gives the constant solutions of (S); 
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(2)Rewrite the equation (S) as 

, 

and, then, integrate 

 

to obtain 

 

(3)Write down all the solutions; the constant ones obtained from (1) and 

the ones given in (2); 

(4)If you are given an IVP, use the initial condition to find the particular 

solution. Note that it may happen that the particular solution is one of the 

constant solutions given in (1). This is why Step 3 is important. 

Example: Find the particular solution of 

 

Solution: Perform the following steps: 

(1)In order to find the constant solutions, solve  . We 

obtain y = 1 and y=-1. 

(2)Rewrite the equation as 

. 

Using the techniques of integration of rational functions, we get 

, 
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which implies 

 

(3)The solutions to the given differential equation are 

 

(4)Since the constant solutions do not satisfy the initial condition, we are 

left to find the particular solution among the ones found in (2), that is we 

need to find the constant C. If we plug in the condition y=2 when x=1, 

we get 

. 

Note that this solution is given in an implicit form. You may be 

asked to rewrite it in an explicit one. For example, in this case, 

we have 

 

Example: Find all solutions to 

. 

Solution: First, we look for the constant solutions, that is, we look for 

the roots of 

 

This equation does not have real roots. Therefore, we do not have 

constant solutions. 
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The next step will be to look for the non-constant solutions. We proceed 

by separating the two variables to get 

. 

Then we integrate 

 

Since 

 =  = 1 -  

we get 

 

Therefore, we have 

 

It is not easy to obtain y as a function of t, meaning finding y in an 

explicit form. 

Finally, because there are no constant solutions, all the solutions are 

given by the implicit equation 

 

Example: Solve the initial value problem 
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Answer: This is a separable equation. Indeed, we have 

 

Before we get into integration we need to look for the constant solutions. 

These are the roots of the equation  . Since this equation has 

no real roots, we conclude that no-constant solution exists. Therefore, we 

proceed with the separation of the two variables and integration. We 

have 

, 

which gives 

 

Since 

 

and 

, 

we get 

 

The initial condition y(0)=1 gives 

 

The particular solution to the initial value problem is 
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, 

or in the explicit form 

 

Example: Consider the autonomous differential equation 

, 

where the graph of f(y) is given by 

 

 

 

1.Sketch the Slope Fields of this differential equation. 

(Hint: the graph of the solutions and the graph of f(y) are two different 

entities.) 

2.Sketch the graph of the solution to the IVP 

 

Find the limit . 

3.Sketch the graph of the solution to the IVP 

 

Find the limit . 
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Answer:  1.Since we do not know the function f(y), we will only be able 

to sketch the slope fields. This will give us an idea about the behavior of 

the solutions. Therefore, we should be looking for the critical solutions 

(given by the roots of f(y)=0), and the sign of f(y) which will give the 

variation of the solutions. Note that we should be careful not to mix 

between the graph of f(y) and the graphs of the solutions y(t). 

So, according to the graph of f(y), the critical solutions are y= -1, y=0, 

and y=1. Using the sign of f(y), we conclude that 

 the solutions located in the region y<-1 are decreasing, 

 the solutions located in the region -1 < y<0 are increasing, 

 the solutions located in the region 0<y<1 are decreasing, 

 the solutions located in the region 1 < y are increasing. 

The sketch of the slope fields is given below. 

 

2.Using the slope fields, we sketch the graph of the solution satisfying 

the initial condition y(0) = 0.5. 

 

Clearly, we have 
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3.Using the slope fields, we sketch the graph of the solution satisfying 

the initial condition y(0) = -0.5. 

 

Clearly, we have 

 

Check In Progress-II 

Q. 1 Define Homogeneous Equation. 

Solution : . . .  . .  . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . .  . . . . . .  . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . . . . . . . . . .  . 

. . . . . . . . . . . . . . . . .  . . . . . . . …………. . .  . .  . . . . . . . . . . .  . . . . . . . . . 

. . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . .  . .  . . . . . . . . . . 

.  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  

Q. 2 Find one solutions to the given differential equation :  

. 

Solution : . . .  . . . . . . .  . . . . . .  . . . . . . . . . . . . .  . . . . .  . . . . . . . . . . . . . . 

. . . . . . . . . . . . . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . 

. . . . .  . . . . . . . …………. . .  . .  . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . …………. . .  . .  . . . . .  . . . . .  . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . .. . .  . .  . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  
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7.7 HERMITE'S EQUATION 

Hermite's Equation of order k has the form 

y''-2ty'+2ky=0, 

 

 

where k is usually a non-negative integer. 

We know from the previous section that this equation will have series 

solutions which both converge and solve the differential equation 

everywhere. 

Hermite's Equation is our first example of a differential equation, which 

has a polynomial solution. 

As usual, the generic form of a power series is 

 

We have to determine the right choice for the coefficients (an). 

As in other techniques for solving differential equations, once we have a 

"guess" for the solutions, we plug it into the differential equation. Recall 

that 

 

and 

                                              

Plugging this information into the differential equation we obtain: 
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or after rewriting slightly: 

                              

 

Next we shift the first summation up by two units: 

                          

 

Before we can combine the terms into one sum, we have to overcome 

another slight obstacle: the second summation starts at n=1, while the 

other two start at n=0. 

Evaluate the 0th term for the second sum: . 

Consequently, we do not change the value of the second summation, if 

we start at n=0 instead of n=1: 

 

Thus we can combine all three sums as follows: 

 

 

Therefore our recurrence relations become: 
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After simplification, this becomes 

 

Let us look at the special case, where k=5, and the initial conditions are 

given as . In this case, all even 

coefficients will be equal to zero, since a0=0 and each coefficient is a 

multiple of its second predecessor. 

                     

What about the odd coefficients? a1=1, consequently 

                             

and 

                             

What about a7: 

                                          

Since a7=0, all odd coefficients from now on will be equal to zero, since 

each coefficient is a multiple of its second predecessor. 

 

 

Consequently, the solution has only 3 non-zero coefficients, and hence is 

a polynomial. This polynomial                      

 

(or a multiple of this polynomial) is called the Hermite Polynomial of 

order 5. 
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It turns out that the Hermite Equation of positive integer order k always 

has a polynomial solution of order k. We can even be more precise: 

If k is odd, the initial value problem  will have a 

polynomial solution, while for k even, the initial value 

problem  will have a polynomial solution. 

Exercise 1: Find the Hermite Polynomials of order 1 and 3. 

Recall that the recurrence relations are given by 

 

 

 

 

We have to evaluate these coefficients for k=1 and k=3, with initial 

conditions a0=0, a1=1. 

When k=1, 

 

 

Consequently all odd coefficients other than a1 will be zero. Since a0=0, 

all even coefficients will be zero, too. Thus 

 

H1(t)=t. 

When k=3, 

 

and 
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Consequently all odd coefficients other than a1 and a3 will be zero. 

Since a0=0, all even coefficients will be zero, too. Thus 

 

 

7.8 SUMMARY 

 

 We study for the solution of a linear equation 

              (1) 

             with a positive-definite self-adjoint operator  it is known that 

one-step iteration methods of the form 

                            

 

(2) 

 We leant A method in which the solution  of a stationary 

problem 

                (1) 

          is regarded as the steady-state limit solution for  of a 

Cauchy initial value problem for a non-stationary evolution equation 

involving the same operator   

 Also learnt Hermite's Equation of order k has the form 

y''-2ty'+2ky=0, 

where k is usually a non-negative integer. 

 We learnt The differential equation of the 

form  is called separable, if f(x,y) = h(x) g(y); 

that is, 
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7.9 KEYWORD 
 

Hermite Equation : The Hermite polynomials are set of 

orthogonal polynomials over the domain with weighting function , 

illustrated above for , 2, 3, and 4. Hermite polynomials are implemented 

in the Wolfram Language as HermiteH[n, x]. The Hermite 

polynomial can be defined by the contour integral. 

Seperable Function : Separable Functions. means that f(x) is a constant. 

For a function of two variables G y(x, y) = 0 means that. G(x, y) is a 

constant function of y but can be an arbitrary function of x. 

Iteration : Sepetition of a mathematical or computational procedure 

applied to the result of a previous application, typically as a means of 

obtaining successively closer approximations to the solution of a 

problem. 

 

7.10 EXCERCISE  
 

Q. 1 Consider the Hermite Equation of order 5: 

 

y''-2ty'+10y=0. 

 

          Find the solution satisfying the initial conditions a0=1, a1=0. 

Q. 2 Find the Hermite Polynomials of order 2, 4 and 6. 

Q. 3 Define Hermite's Equation . 

Q. 4 Find all solutions to 

. 

Q. 5 Find all the solutions of 
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7.11 ANSWER TO CHECK IN PROGRESS 
 

Check In Progress-I 

Answer Q. 1 Check in Section 4 

 Q. 2 Check in Section 5 

Check In progress-II 

Answer Q. 1 Check in Section 6 

 Q. 2 Check in Section 7 
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